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Prefaceto volumell

In the second volume of this book (chapters 3 and 4) we proceed to discuss path-integral applications
for the study of systems with an infinite number of degrees of freedom. An appropriate description of
such systems requires the use of second quantization, and hence, field theoretical methods. The starting
point will be the quantum-mechanical phase-space path integrals studied in volume I, which we suitably
generalize for the quantization of field theories.

One of the central topics of chapter 3 isthe formulation of the cel ebrated Feynman diagram technique
for the perturbation expansion in the case of field theories with constraints (gauge-field theories),
which describe al the fundamental interactions in elementary particle physics. However, the important
applications of path integrals in quantum field theory go far beyond just a convenient derivation of the
perturbation theory rules. We shall consider, in this volume, various modern non-perturbative methods for
calculationsin field theory, such as variational methods, the description of topologically non-trivial field
configurations, the quantization of extended objects (solitons and instantons), the 1/ N-expansion and the
calculation of quantum anomalies. In addition, the last section of chapter 3 contains elements of some
advanced and currently developing applications of the path-integral technique in the theory of quantum
gravity, cosmology, black holes and in string theory.

For a successful reading of the main part of chapter 3, it is helpful to have some acquaintance with
a standard course of quantum field theory, at least at a very elementary level. However, some parts
(e.g., quantization of extended objects, applications in gravitation and string theories) are necessarily
more fragmentary and presented without much detail. Therefore, their complete understanding can be
achieved only by rather experienced readers or by further consultation of the literature to which we
refer. At the same time, we have tried to present the material in such a form that even those readers
not fully prepared for this part could get an idea about these modern and fascinating applications of path
integration.

As we stressed in volume |, one of the most attractive features of the path-integral approach is its
universality. This means it can be applied without crucial modifications to statistical (both classical
and quantum) systems. We discuss how to incorporate the statistical properties into the path-integral
formalism for the study of many-particle systems in chapter 4. Besides the basic principles of path-
integral calculations for systems of indistinguishable particles, chapter 4 contains a discussion of various
problems in modern statistical physics (such as the analysis of critical phenomena, calculationsin field
theory at non-zero temperature or at fixed energy, as well as the study of non-equilibrium systems and
the phenomena of superfluidity and superconductivity). Therefore, to be tractable in a single book,
these examples contain some simplifications and the material is presented in a more fragmentary style
in comparison with chapters 1 and 2 (volume I). Nevertheless, we have again tried to make the text as

iX



X Preface to volume 1

self-contained as possible, so that all the crucial points are covered. The reader will find referencesto the
appropriate literature for further details.

Masud Chaichian, Andrei Demichev
Helsinki, M oscow
December 2000



Chapter 3

Quantum field theory: the path-integral approach

So far, we have been discussing systems containing only one or, at most, a few particles. However,
the method of path integrals readily generalizes to systems with many and even an arbitrary number of
degrees of freedom. Thusin this chapter we shall consider one moreinfinite limit related to path integrals
and discuss applications of the latter to systems with an infinite number of degrees of freedom. In other
words, we shall derive path-integral representations for different objects in quantum field theory (QFT).
Of course, this is nothing other than quantum mechanics for systems with an arbitrary or non-conserved
number of excitations (particles or quasiparticles). Therefore, the starting point for us is the quantum-
mechanical phase-space path integrals studied in chapter 2. In most practical applicationsin QFT, these
path integrals can be reduced to the Feynman path integrals over the corresponding configuration spaces
by integrating over momenta. This is especially important for relativistic theories where this transition
allows usto keep relativistic invariance of all expressions explicitly.

Apparently, the most important result of path-integral applicationsin QFT is the formulation of the
celebrated Feynman rules for perturbation expansion in QFT with constraints, i.e. in gauge-field theories
which describe al the fundamental interactions of elementary particles. In fact, Feynman derived his
important rules (Feynman 1948, 1950) (in quantum electrodynamics (QED)) just using the path-integral
approach! Later, these rules (graphically expressed in terms of Feynman diagrams) were rederived in
terms of the standard operator approach. But the appearance of more complicated non-Abelian gauge-field
theories (which describe weak, strong and gravitational interactions) again brought much attention to the
path-integral method which had proved to be much more suitable in this case than the operator approach,
because the latter faces considerable combinatorial and other technical problemsin the derivation of the
Feynman rules. In fact, it is this success that attracted wide attention to the path-integral formalism in
QFT and in quantum mechanicsin general.

Further development of the path-integral formalism in QFT has led to results far beyond the
convenient derivation of perturbation theory rules. In particular, it has resulted in various non-perturbative
approximations for calculations in field theoretical models, variational methods, the description of
topologically non-trivial field configurations, the discovery of the so-called BRST (Becchi—Rouet—Stora—
Tyutin) symmetry in gauge QFT, clarification of the relation between quantization and the theory of
stochastic processes, the most natural formulation of string theory whichisbelieved to bethe most realistic
candidate for a‘theory of everything’, etc.

Inthefirst section of this chapter, we consider path-integral quantization of the simplest field theories,
including scalar and spinor fields. We derive the path-integral expression for the generating functional
of the Green functions and develop the perturbation theory for their calculation. In section 3.2, after
an introduction to the quantization of quantum-mechanical systems with constraints, we proceed to the
path-integral description of gauge theories. We derive the covariant generating functional and covariant
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2 Quantum field theory: the path-integral approach

perturbation expansion for Yang-Mills theories with exact and spontaneously broken gauge symmetry,
including the redlistic standard model of electroweak interactions and quantum chromodynamics (QCD),
which is the gauge theory of strong interactions.

In section 3.3, we present non-perturbative methods and results in QFT based on the path-
integral approach. They include 1/N-expansion, separate integration over different Fourier modes
(with appropriate approximations for different frequency ranges), semiclassical, in particular instanton,
calculations and the quantization of extended objects (solitons), the analysis and calculation of quantum
anomalies in the framework of the path integral and the Feynman variational method in non-relativistic
field theory (on the example of the so-called polaron problem).

Section 3.4 contains some advanced applications of path-integral techniquesin the theory of quantum
gravity, cosmology, black holes and string theory. Reading this section requires knowledge of the basic
facts and notions from Einstein’s general relativity and the differential geometry of Riemann manifolds
(some of these are collected in supplement V).

We must stress that, although we intended to make the text as self-contained as possible, this chapter
by no means can be considered as a comprehensive introduction to such a versatile subject as QFT. We
mostly consider those aspects of the theory which have their natural and simple description in terms of
path integrals. Other important topics can be found in the extensive literature on the subject (see e.g.,
Wentzel (1949), Bogoliubov and Shirkov (1959), Schweber (1961), Bjorken and Drell (1965), Itzykson
and Zuber (1980), Chaichian and Nelipa (1984), Greiner and Reinhardt (1989), Peskin and Schroeder
(1995) and Weinberg (1995, 1996, 2000)).

3.1 Path-integral formulation of the smplest quantum field theories

After a short exposition of the postulates and main facts from conventional field theory, we present the
path-integral formulation of the simplest models: a single scalar field and a fermionic field. The latter
requires path integration over the Grassmann variables considered at the end of chapter 2. Then we
consider the perturbation expansion and generating functional for these simple theories which serve as
introductory examplesfor the study of the realistic models presented in the next section.

3.1.1 Systemswith an infinite number of degreesof freedom and quantum field theory

There are various formulations of quantum field theory, differing in the form of presentation
of the basic quantities, namely transition amplitudes. In the operator approach, the transition
amplitudes are expressed as the vacuum expectation value of an appropriate product of particle
creation and annihilation operators. These operators obey certain commutation relations
(generalization of the standard canonical commutation relations to a system with an infinite
number of degrees of freedom). Another formulation is based on expressing the transition
amplitudes in terms of path integrals over the fields. In studying the gauge fields, the path-
integral formalism has proven to be the most convenient. However, for an easier understanding
of the subject we shall start by considering unconstrained fields and then proceed to gauge-field
theories (i.e. field theories with constraints).

Let us consider, as a starting example, a single scalar field. From the viewpoint of
Hamiltonian dynamics, a field is a system with an infinitely large number of degrees of freedom,
for the field is characterized by a generalized coordinate ¢(x) and a generalized momentum 7 (X)
at each space point x € R9.

It is worth making the following remark. If we were intending to provide an introduction to
the very subject of quantum field theory, it would be pedagogically more reasonable to start
from non-relativistic many-body problems and the corresponding non-relativistic quantum field
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Figure 3.1. Vibrating chain of coupled oscillators; the distances between the equilibrium positions of the particles
are equal to some fixed value a, the displacements of the particles from the equilibrium positions are the dynamical
variablesand aredenoted by g (k=1, ..., K).

theories, as they are the closest generalization of one (or at most a few) particle problems in
guantum mechanics. However, the area of the most fruitful applications of non-relativistic field
theories is the physics of quantum statistical systems, in general with non-zero temperature.
Path integrals for statistical systems have some peculiarities (in particular, the corresponding
trajectories may have a rather specific meaning, one which is quite different from that in quantum
mechanics). Therefore, we postpone discussion of such systems until the next chapter and
now proceed to consider path-integral formulation of quantum field theories at zero temperature
which finds its main application in the description of the relativistic quantum mechanics of
elementary particles. In this chapter, we shall encounter only one example of a non-relativistic
field theoretical model which describes the behaviour of an electron inside a crystal (the so-
called polaron problem).

<& Quantum fieldsas an infinite number of degreesof freedom limit of systemsof coupled oscillators

In order to approach the consideration of systems with an infinite number of degrees of
freedom (quantum fields) we start from a chain of K coupled oscillators with equal masses
and frequencies, in the framework of ordinary quantum mechanics (see figure 3.1).

The Hamiltonian of such a system has the form

K
H =" 3[p§ + Q2(ck — thr1)® + Q507 (3.11)
k=1
where pk, gk (k = 1,..., K) are the canonical variables (momentum and position) of the kth
oscillator and the equations of motion read:

Gk = Pk
. , , (3.1.2)
Pk = Q27°(Ak+1 + Ok—1 — 20k) — 250Kk
or, written only in terms of coordinates,
bk = Q%(Ghr1 + Gh—1 — 20K) — 2F0k- (3.13)

The frequency g defines the potential energy of an oscillator due to a shift from its equilibrium
position and the frequency Q2 defines the interaction of an oscillator with its neighbours. Since
we shall use this model as a starting point for the introduction of quantum fields, a concrete



4 Quantum field theory: the path-integral approach

value of the particle masses in (3.1.1) is not important and for convenience we have put it equal
to unity (cf (2.1.42)). Besides, as is usual in relativistic quantum field theory, we use units such
that h = 1.

The equations of motion must be accompanied by some boundary conditions. Since we
are going to pass later to systems in infinite volumes (of infinite sizes), the actual form of
the boundary conditions should not have a crucial influence on the behaviour of the systems.
Therefore, we can choose them freely and the most convenient one is the periodic condition:

Ok+K = Ok- (31.4)

After the quantization, the canonical variables become operators with the following
canonical commutation relations:

[Gk. P11 =idk
o R (3.1.5)
[Gk. Gl =[Pk, PII=0 kK, =1,...,K
In order to find the eigenvalues of the corresponding quantum Hamiltonian
K
=) 4P + Q3G — Gkr1)® + QG2 (3.1.6)

k=1

it is helpful to introduce new variables (the so-called normal coordinates) Qr, B, via the discrete
Fourier transform:

1 K/2 .
Ak - = Q‘ e|271rk/K
! ﬁ r=§/2+1 r 317
1 K /2 (3.1.7)
~ B a—i2rrk/K
Pk = — Z Pe i2mr
\/K r=—K/2+1
with the analogous commutation relations
[Qr, Psl =idrs
(3.1.8)

[Qr, Qsl =[P, Ps] =0

where r and s are integers from the interval [-K/2+ 1, K/2]. Itis easy to verify that the normal
coordinates also satisfy the periodic conditions: Q_k /2 = Q2 and P_k 2 = Pk 2, so that we
again have 2N independent variables (as in the case of Gk, Pk). This restriction, as well as the
range of the summations in (3.1.7), follows from the periodic boundary conditions (3.1.5). Since
Ok, Pk are Hermitian operators, the new operators satisfy the conditions

Q=0 BR=Pk (3.1.9)
The Kronecker symbol §),, can be represented as the sum

K
Zéan(l—n)/K = Kdn. (3.1.10)
k=1
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This is an analog of the integral representation (1.1.22) for the §-function, adapted to the
discrete finite lattice with a periodic boundary condition. Using this formula, we can invert the
transformation (3.1.7) of the dynamical variables:

K
Zq\ —i2rrk/K

T ot
< (3.1.11)
~ 1 ;
P =—_—_ ke|27rrk/K_
=R k;
In the normal coordinates Q;, Py the Hamiltonian (3.1.6) takes the simpler form
K/2
H =% Z [P R +w?QrQfl (3.1.12)
—K/2+1
2 2
=Q ZsmT + Q2. (3.1.13)

Thus, in the normal coordinates we have K non-interacting oscillators and it is natural to
introduce the creation and annihilation operators (cf (2.1.47), taking into account that Q;, P
now are not Hermitian operators):

1 ~
a = Qr +iPh
v i)r T (3.1.14)
af - T)r Qr |PI’)

(note that a_, # ?a}T). The commutation relations for &, & are derived from (3.1.8) with the
expected result:

(3. 80] = s

¢ ot (3.1.15)
@, &) =[&,8] =
In terms of these operators, the Hamiltonian (3.1.12) reads as
K/2
H= Y o@a+3). (3.1.16)
r=—K/2+1

Eigenstates of the Hamiltonian written in the latter form can be constructed in the standard way:

the state
K/2

1
IN_Kkj211 N k2t kg2 =[] \/_(ar)”f 10) (3.1.17)
r=—K/2+1

is the Hamiltonian eigenstate with energy (eigenvalue)

E=Eo+ ) nNror. (3.1.18)
r
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The state |0) in (3.1.17) has the lowest energy:
Z wr

and is defined by the conditions
a0)=0 r=-K/2+1,...,K/2 (3.1.20)

Let us consider the continuous limit for a chain of coupled oscillators K — oo, a — 0, with
a finite value of the product aK = L. Technically, this corresponds to the following substitutions:

q(x) 1 /L v
—_— — — = d Q— — 3.1.21
Ok Ja Xk: al, 9 2 ( )
and Hamiltonian (3.1.1) takes the following form in the limit
S 2 (39 | 22
H =/ dx = | p°(X, t) + v (—) + Q5a°(x, t) | . (3.1.22)
0 2 ax

Now the degrees of freedom of the system are ‘numbered’ by the continuous variable x.
However, for a finite length L, the normal coordinates Q;, P are still countable:

e¢]

_ i i27r /L
qx) = N r;me Qr
e (3.1.23)
- eiZTN/LP
p(x) N r;oo r

though the index r is now an arbitrary unbounded integer. The quantum Hamiltonian can be
cast again into the form (3.1.12) or (3.1.16):

o0
H=3 > (AR +?Q:Q)
r=—o0
o0
- Y w@a+h (3.1.24)
r=—o00
2y
W =02+ Q2 k= % (3.1.25)

with the only difference begin that the sums run over all integers. The eigenstates and
eigenvalues of this Hamiltonian are given by (3.1.17)—(3.1.20). The essentially new feature
of this system with an infinite number of degrees of freedom (i.e. after the transition K — o0) is
that the energy (3.1.19) of the lowest eigenstate |0) becomes infinite. We can circumvent this
difficulty by redefining the Hamiltonian as follows:

H—H-Eo=3 ) oda (3.1.26)
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i.e. counting the energy with respect to the lowest state |0). This is the simplest example of the
so-called renormalizations in quantum field theory.

All the considerations outlined here can easily be generalized to higher-dimensional lattices
and corresponding higher-dimensional spaces in the continuous limit. In the latter case, the
dynamical variables depend on (are labeled by) d-dimensional vectors:

ax,t) — ox, ) PX.t) — A(x,t) xeRd (3.1.27)

so that we have arrived in this way at the notion of the quantum field in the (d + 1)-dimensional
spacetime. Note that the straightforward generalization of the coupled oscillator model
previously considered in the one-dimensional space leads to the vector fields ¢(x,t), & (X, t)
because the displacements and momenta of oscillators in d-dimensional spaces are described
by vectors. However, if we assume that for some reason the displacements are confined to one
direction, we obtain the physically important case of scalar quantum fields ¢(x, t), 7 (x, t).

Hamiltonians for quantum fields in higher-dimensional spaces are the direct generalizations
of those for the one-dimensional case (cf (3.1.22)). In particular, for the most realistic three-
dimensional space, we have

H=3 / dr [A2(r, 1) + v2(VO(r, )% + Q3G2(r, D). (3.1.28)

The operators of the quantum field ¢(r, t) and the corresponding momentum 7 (r, t) satisfy the
canonical commutation relations at equal times:

[@(r, 1), Z(r', )] =i83(r —r')
. A . . (3.1.29)
[@(r, 1), @(r', )] = [z (r, 1), 7 (r', )] = 0.
The three-dimensional periodic boundary conditions require the following equalities:
pX+L,y,zt) =X, y+L,z,t) =p(X,y,z+ L, 1) = 0(X,y,21) (3.1.30)

and the corresponding Fourier transform,

R 1 - - - : "
o0 = 55 Z (2wy) 2Kk T-erbg 4 gikr-akbgT) (3.1.31)
K, Ky, kz=—00
27l
Key.z = ”E’V’Z (3.1.32)
ot = v2k? + Q3 (3.1.33)

allows us once again to convert (3.1.28) into the Hamiltonian for an infinite set of independent
oscillators:

o
A= Y wo@ac+d (3.1.34)
Ix,y,z=—00

with ﬁl, Ay being the creation and annihilation operators subjected to the following commutation
relations:
[, B ] = Sk
(3.1.35
[&. 3] =1a,8)]=0.
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The eigenstates and eigenvalues of this Hamiltonian again have the form (3.1.17)—(3.1.20),
so that the energy of a state |ng, ng,, ...) is completely defined by the set {ny,} of occupation
numbers {ng} = Nk, Nk,, ... (i.e. by powers of the creation operators on the right-hand side of
(3.1.17)):
Efng — Eo= ) _ Nk (3.1.36)
i
Note that, if we put
v=cCc Qo=mc? (3.1.37)

where c is the speed of light and m is the mass of a particle, equation (3.1.33) exactly coincides
with the relativistic relation between energy, mass and momentum k of a particle. Hence,
expression (3.1.36) for the energy of the quantum field ¢(x, t) can be interpreted as the sum
of energies of the set (defined by the occupation numbers {ny,}) of free relativistic particles. To
simplify the formulae, we shall, in what follows, put the speed of light equal to unity, ¢ = 1; the
latter can be achieved by an appropriate choice of units of measurement.

e Thus, we have obtained a remarkable result: a quantum field with the Hamiltonian (3.1.28)
(or (3.1.22)) and the choice of parameters as in (3.1.37) is equivalent to a system of
an arbitrary number of free relativistic particles. According to the commutation relations
(3.1.35), these particles obey Bose—Einstein statistics.

We have already mentioned the specific problems of quantum systems with an infinite
number of degrees of freedom, that is, the appearance of divergent expressions. One example
is the energy of ‘zero oscillations’ (3.1.19), which diverges for an infinite number of oscillators.
Another example is the expression for ‘zero fluctuations’ of the field ¢(t, r), in other words for the
dispersion of the field in the lowest energy state:

(Do $)? = (019?|0)

1 1 1 1
= d3k — = o ) 3.1.38
(271)3/ 2wk (2n)3/ 2/k2 + m2 - ( )

The reason for the infinite value of the fluctuation is related to the fact that ¢, acting on an
arbitrary state with finite energy, gives a state with an infinite norm. Thus ¢ does not belong
to well-defined operators in the Hilbert space of states of the Hamiltonian under consideration.
Another way to express this fact is to say that ¢ is an operator-valued distribution (generalized
function). To construct a well-defined operator, we have to smear ¢ with an appropriate test
function, e.g., to consider the quantity

1
(27.[)\2)3/2

&

@ / d3r e /@Dt 1) (3.1.39)
which can be interpreted as an average value of the field in the volume A3 around the point r.
The reader may check that the dispersion of ¢, is finite:

(01¢?0) ~ (3.1.40)

1
VA2 +m?
(problem 3.1.1, page 38). The last expression shows that the smaller the volume 23 is, the

stronger the fluctuations of the field are. This fact, of course, is in full correspondence with the
guantum-mechanical uncertainty principle.
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<& Relativigticinvariance of field theories and Minkowski space

To reveal explicitly the relativistic symmetry of the system described by the Hamiltonian (3.1.28)
with the parameters (3.1.37), we should pass to the Lagrangian formalism:

Hlz(r,t), o(r. )] — Llg(r, 1), o(r, )]

where L is the classical Lagrangian defined by the classical Hamiltonian H via the Legendre
transformation:

Lio(r, 1), o(r, )] = /d3r a(r,He(r,t) — Hlxz(r,t), o(r,bt)]. (3.1.41)

The momentum 7 on the right-hand side of (3.1.41) is assumed to be expressed through ¢, ¢
with the help of the Hamiltonian equation of motion. In our case,

p={p,H}=m (3.1.42)

(recall that {-, -} is the Poisson bracket). Thus, the Lagrangian for the scalar field reads as
L(t) = /d3r 2[G2(r, v — (Vo(r, 1))? — m2p?(r, 1)]. (3.1.43)

To demonstrate the invariance of the Lagrangian (3.1.43) with respect to transformations forming
relativistic kinematic groups, i.e. the Lorentz or Poincaré groups, it is helpful to pass to
four-dimensional notation. Let us introduce the four-dimensional Minkowski space with the
coordinates:

Tty u=0123 (3.1.44)
i.e. .
xXO=t X =r i=123,
and the metric tensor
g = diag{l, -1, -1, -1} (3.1.45)

which defines the scalar product of vectors in the Minkowski space:

def v
xy = x"y, = xFguy

(repeating indices are assumed to be summed over). In particular, the squared vector in the
Minkowski space reads as

X2 = (X% = X' gux” = (x9? — (xH% = (x*)% = (%
=t2—r2=t2—r2_r3_r2 (3.1.46)
or, for the infinitesimally small vector dx*,
(dx*)? = dx* g, dx” = (dt)? — (dr)2. (3.1.47)

In the literature on relativistic field theory, it is common to drop boldface type for four-dimensional
vectors and we shall follow this custom. If the vector indices u, v, ... take, in some expressions,
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only spacelike values 1, 2, 3, we shall denote them by Latin letters I, k, ... and use the following
shorthand notation:

3
AB = Z A B
=1

where Ay, B are the spacelike components of some four-dimensional vectors A, = {Aqg, Al},
B, = {Bo, Bi}.

The Minkowski metric tensor g, is invariant with respect to the transformations defined by
the pseudo-orthogonal 4 x 4 matrices A", from the Lie group SO(1, 3), called the Lorentz group:

A? 9o Ay = Quu- (3.1.48)

This means that any scalar product in the Minkowski space is invariant with respect to the
Lorentz transformations. Moreover, the scalar products of vectors (recall that the latter are
expressed through the differences in the coordinates of two points) are also invariant with
respect to the four-dimensional translations forming the Abelian (commutative) group T4. In
particular, the reader can easily verify that dx* g,, dx" and (3/9x*)g""(d/9x"), where g*"
denotes the inverse matrix

gp.p gpv = 5“1}

are invariant with respect to both Lorentz ‘rotations’ as well as translations and, hence, with
respect to the complete Poincaré group SO(1, 3)® Ta.

We shall not go further into the details of relativistic kinematics, referring the reader to, e.g.,
Novozhilov (1975), Chaichian and Hagedorn (1998) or any textbook on quantum field theory (in
particular, those mentioned at the very beginning of this chapter).

To restore full equivalence between the time and space coordinates, it is useful to introduce
the Lagrangian density. This is nothing other than the integrand of (3.1.43), which, in four-
dimensional notation, takes the form

Lo(¢, ¢) = 30" 8,0(X)3,p(X) — MPp2(X)]. (3.1.49)

The action for a scalar relativistic field and for the entire time line —co < x® < 0o can now be
written as follows:

Sole] = /ﬂ;{ A% Lo(@, ). (3.1.50)

Taking into account the fact that the integration measure d*x = dx°dx! dx2dx3 is invariant with
respect to the pseudo-orthogonal Lorentz transformations as well as with respect to translations,
we can readily check that action (3.1.50) is indeed Poincaré invariant.

For a finite-time interval, to <t = x° < ty, the action reads as

ts ts
S[(p]:/ dxOL E/ de/ dxtdx?dx3 L(g, ¢). (3.1.51)
t to R3

0

The equation of motion can now be derived from the extremality of action (3.1.51): §S = 0O,
together with the boundary conditions that variations of the field at times tp and t; vanish:
3p(tg) = d¢(ts) = 0, which result in the Euler—Lagrange equation

d4éL dL

_—— = (3.1.52)
at 8¢ Y7
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For a free scalar field with the Lagrangian density (3.1.49), the Euler-Lagrange equation is
equivalent to the so-called Klein—Gordon equation:

(3.1.53)

@O+ m)p(x) =0 (3.1.54)

where
2

3
e V2. (3.1.55)

In order to describe interacting particles, we have to add, to the Lagrangian density (3.1.49),
higher powers of the field ¢(x):

g

g g"v9,0, =

L@, 9) = 3[0"78,0(X)8 p(x) — M?Y2(x)] — V (¢(X)). (3.1.56)

Here the function V (¢(x)) describes a field self-interaction. The equation of motion for ¢ now
becomes

LAY
O+ M) = - V@) (3.1.57)
dp
Most often, we shall consider a self-interaction of the form
_9 4
V(p(X) = Z(p () (3.1.58)

where g € R is called the coupling constant. In systems described by the Lagrangian (3.1.57)
and expressions similar to it (i.e. with interaction terms), particles (field excitations) can arise
and disappear, so that the total number of particles is not a conserved quantity. This is a
characteristic property of relativistic particle theory. Vice versa, it is clear that a system with an
arbitrary number of particles definitely requires, for its description, a formalism with an infinite
number of degrees of freedom, i.e. the quantum field theory.

<& Lagrangian for spin-% field, Dirac equation and operator quantization

Many well-established types of particle in nature (for example, electrons, positrons, quarks,
neutrinos) have half-integer spin J = % and obey Fermi statistics. Systems of such particles
are described by spinor (fermion) quantum fields satisfying canonical anticommutation relations
(see any textbook on quantum field theory, e.g., Bogoliubov and Shirkov (1959), Bjorken and
Drell (1965) and Itzykson and Zuber (1980)).

A system of free relativistic spin—% fermions is described by a four-component complex field
Yo (X),« =1,...,4and has the Lagrangian density

4
LOO =000 F =My = Y Pa()(i fup — Map)Pp(X) (3.1.59)

o,f=1

where we have introduced the standard notation: for any four-dimensional vector A,, the
quantity A means

g

A= prAL =guy A =y0A0 —y . A (3.1.60)



12 Quantum field theory: the path-integral approach

and y*, u =0, 1, 2, 3 are the Dirac matrices satisfying the defining relations
vy vyt =291, (3.1.61)

(14 is the 4x 4 unit matrix). In particular, § = y*9,,. One possible representation of the y-matrices

has the form .
o_(12 O i _( 0 o o
yo= < 0 _12) Vv = <_a| 0 =123 (3.1.62)

Here o' are the Pauli matrices and 15 is the 2 x 2 unit matrix. The Dirac conjugate spinor  (X)
in (3.1.59) is defined as follows:

Joo 2

g

4
PR AT (3.1.63)
p=1

vTooy?  or Pe(x)

Note that, as is usual in the literature on quantum field theory, we do not use special print for
either the y-matrices or the Pauli matrices (similarly to four-dimensional vectors).

The extremality condition for the action with the density (3.1.59) (Euler equation) gives the
Dirac equation for a spin-3 field

(ig—myx) =0. (3.1.64)

The general form for the expansion of a solution of the Dirac equation (3.1.64) over plane waves
is the following:

2
— 1 3 * . ikx ’ . —ikx
VN = 555 Z/d kb7 (koui (0 + ci (K)vi ()e™*]
=1 (3.1.65)

2
v, n = ﬁ 3 / d3k [b (kyu! (ke ™ + ¢ (kv (e
i=1

where k9 = wx = vkZ +m? and u; (k), vi (k), i = 1, 2 comprise the complete set of orthonormal
solutions of the Dirac equation (in the momentum representation):

M — m)Ui(k)lko:m =0

M+ m)Ui(k)Iko:ﬂ/m =0

so that, in fact, u; and v; are only functions of three-dimensional momentum k.
The orthogonality relations read as

n

B (K)vj (K) = Y (@1 (K)a (v (K)o
a=1
— —GMou ) = g
wk
vl (K)vj (k) = uf (kuj (k) = 5; (3.1.66)

Gi (K)vj (k) = u] (K)vj (—=k) =0
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and the completeness relations are

D T () (@i (K))p — (Ui (K)o (@i (K)g] = wmkaaﬁ
i
_ 1
Z(Ui (K)o (@ (KD = 5 (K + M) (3.1.67)

1
D Wi (k) (i (K))p = T K = MBap)-

The quantization procedure converts the amplitudes b, b*, ¢, ¢* into creation and annihilation
operators for fermionic particles. To take into account the Pauli principle, we have to impose
anticommutation relations:

{61 (), B (K} = 883k — k)
6 k), € ()} = 8ij63(k — K)
{bi (k), bj ()} = (G (K), T (K)} = 0
(b (0. B! ()} = (& (k). el )} = 0
B (). T (K)} = {Bi (k). T (K)} =0
@k, b ()} = (€] k), Bl (k)} = 0.

(3.1.68)

From these relations, it is easy to derive the equal-time anticommutation relations for the fields

AR ) )
(D (t, 1), P (L 1)} = Sapd®(r — 1)
(ot 0, Ypt. 1)} =0 (Pl 0. ¥ mi=o0.

Note that the canonical momentum r,, conjugated to the field v, with respect to the Lagrangian
(3.1.59) is equal to iy

(3.1.69)

oL
— i T
Ty = — = . 3.1.70
o a‘(ﬁa I//.o[ ( )
Thus the commutation relations (3.1.69) are nothing other than the fermionic generalization of
the canonical commutation relations for (generalized) coordinates and conjugate momenta. The
corresponding Hamiltonian

H =/d3r(m/}—,c)

(L is the Lagrangian density (3.1.59)) in the quantum case can be written in terms of the
fermionic creation and annihilation operators:

N

H = Z/dgkwk[ﬁr(k)ﬁi (k) — & (0T (K. (3.1.72)
i=1

In order to make this Hamiltonian operator positive definite, we can use the anticommutation
relations (3.1.68) together with an infinite shift of the vacuum energy similarly to the bosonic
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case (cf (3.1.26)):

o~ o~

A-A- O—Z f Ak andB (0B () + 81 (WG (1.

Sometimes this procedure of energy subtraction in the fermionic case is carried out by
invoking the qualitative concept of a Dirac ‘sea’, i.e. we assume that all negative-energy states
are occupied and real experimentally observable particles correspond to excitations of this
background state of the whole fermion system (see e.g., Bjorken and Drell (1965)).

3.1.2 Path-integral representation for transition amplitudesin quantum field theories

In the operator approach, there exist different representations for the canonical field operators ¢(r) and
7 (r) satisfying the commutation relations (3.1.29) or (3.1.69). For example, in the case of the scalar field
theory and in the coordinate representation, the vectors of the corresponding Hilbert space of states are
functionals ®[¢(r)] of thefield ¢(t, r) and the operator ¢ is diagonal:

P(NPlp(N] = @(r)®lp(r)]

)
A(NPlp(n)] = I—<I>[ (9)F
¢ So(r) @
Thus, when quantizing a field theory (in other words, a system with an infinite number of degrees of
freedom), even in the operator approach, we have to deal anyway with functionals, so that an application
of path (functional) integralsin thisareais highly natural.

<& Path integralsin scalar field theory

In fact, the introduction of quantum fields, presented in this section, as the limit of systems with a finite
number of degrees of freedom (coupled oscillators), allows us to write immediately an expression for
the corresponding transition amplitude (the quantum-mechanical propagator). Indeed, in the case of a
field theory, the space coordinatesr = {x1, x2, x3} label the different degrees of freedom. For the lattice
approximation (with spacing a) in a finite volume L2, from which we started in this section, we have
simply a finite number K2 of oscillators g = ¢(rk) (cf (3.1.21) and (3.1.27); generally speaking, we
have anharmonic oscillators because of the self-interaction term V (¢) in (3.1.56)). Therefore, we can
write the transition amplitude for the quantum fields as a direct generalization (infinite limit) of the path-
integral representation for propagators of quantum-mechanical systems with afinite number of degrees of
freedom obtained in chapter 2 (cf (2.2.9) and (2.2.21)):

(p(t, 1), tlgo(to, ). to) = <<p(r>|e*‘“*t°>ﬁ|<po(r>>

N+1
- Lll—>moo K“—>moo N“—>moo { |:/ d(ﬂ] (rk)i|

12
a—>0 -0 k=1 =1 00

x exp{iSn (i (1), ; sos(n), )} (3.1.72)

where the discrete-time and discrete-space approximated action Sy dependsonall j (r),i =1,..., N+
L1=1...,Kades(r),s=0,...,N+ 11 =1 ..., K variables (N isthe number of time dices
and ¢ isthe ‘distance’ between the time slices). In the case of Hamiltonian (3.1.28), the continuous limits
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in (3.1.72) correspond to the following path integral:

t
<¢(t,r),t|¢o(to,r),to>=f D(p(t,r)wexp{i/ df/ o [n(r,r)argo(r,r)
Clgo(r).to:e(r),t) 2r ty  JRS
13 1
-5 2 Wie( r)?— Em2<p2(r, r) —V(p(r, r))“. (3.1.73)
i=1

Gaussian integration over the momentar (z, r) yields the Feynman path integral in the coordinate space:

t
(@(t, 1), tigo(to, 1), to) = ML Do (z, 1) exp{i/ de/ dxldxzdx3£(<p)}
Cloo(r),to;(r),t} to R3
(3.1.74)
where the Lagrangian density £(¢) isdefined in (3.1.56) and
n1 ¥ /Dn(x) exp{—l—Z/anz(x)} (3.1.75)

isthe normalization constant for expressing the transition amplitude via the Feynman (configuration) path
integral.

Expression (3.1.74) is almost invariant with respect to relativistic Poincaré transformations. The
only source of non-invariance is the restriction of the time integral in the exponent to the finite interval
[to, t]. However, it is necessary to point out that elementary particle experimentalists do not measure
probabilitiesdirectly related to amplitudesfor transitions between eigenstates |¢ (to, ), to) and |e(t, 1), t)
of the quantum field ¢(z, r), but rather probabilities related to S-matrix elements, i.e. to probability
amplitudes for transitions between states which, at t — +oo, contain definite numbers of particles of
varioustypes. Thesearecalled ‘in’ and ‘out’, |«, in) and |8, out), where « and 8 denote sets of quantum
numbers characterizing momenta, spin z-components and types of particle (e.g., photons, leptons, etc).
The S-matrix operator is defined as follows (cf (2.3.136)):

= Jim gtHog=i(t—tHH g-it'Ho (3.1.76)
t'——o0

where Hy is the free Hamiltonian (without the self-interaction term V (¢p)). Physically, this operator
describes the scattering of elementary particles, i.e. we assume that

e initialy, the particles under consideration are far from each other and can be described by the free
Hamiltonian (because the distance between particles is much larger than the radius of the action of
the interaction forces);
then the particles become closer and interact; and
finaly, the particles which have appeared as a result of the interaction again move far away from
each other and behave like free particles.

The advantage of operator (3.1.76) isthat its matrix elementsproveto be explicitly relativistically invariant
(seelater).
<& The path integral in holomor phic representation

The path-integral representation for transition amplitudes (3.1.74) is not particularly convenient for
deriving the matrix elements of the scattering operator (3.1.76). Even the path-integral expression for
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the free evolution operator €0 is rather cumbersome in this representation. The operator formulation
of the field theory briefly presented earlier prompts a formalism based on the creation and annihilation
operators and the corresponding path integration variables may appear to be much more suitable. Indeed,
as we have learned, determining the eigenstates and eigenvalues of the free Hamiltonian is much simpler
in terms of these operators. Similar reasons make path integrals constructed on the basis of creation and
annihilation operators, i.e. for normal symbols, more convenient. Fortunately, we are quite ready for this
construction due to our considerations in sections 2.3.1 and 2.3.3. In quantum field theory, such path
integrals are called path integralsin a holomorphic representation.
We start from the continuous analog of the Fourier transform (3.1.31):

(r) = ;/dg’r =
= oy Ny

_L 3. i [k _x —ikr ik-r
a(r) = P /d rif > @* ke a(k)exn
ok = VK2 +m2, (3.1.78)

The free-particle Hamiltonian (3.1.34) in the continuous limit has the form

(3.1.77)

Ho = / Pk axa* (Kak) (31.79)

and isthe continuous sum of an infinite number of oscillators. Herethe variable k  numbers’ the oscillators
and wy are their frequencies. The total Hamiltonian H for afield with self-interaction also contains the
term

Via*, a] = /3d3r V(p(r)). (3.1.80)
R

The evolution operator is defined by its norma symbol U (a*(k), a(k); t, tg), which is expressed
through the path integral viathe straightforward generalization of expression (2.3.103) for one oscillator:

U @*(k), a(k); t, to) = /Da*(k, )Da(k, 1)
X exp{ / d3k [a*(k, tyack, t) — a*(k, tya(k, to)]}

t
xexp{/ dt/d3k[—a*(k, nack, v) — ioka*(k, vack, 7)]
to

t
—/ drV[a*,a]} (3.1.81)
t

0

where the boundary conditions are ‘asymmetrical’, as usual for normal symbols: wefix a*(k, t) at timet
and a(k, tp) at to:
a*k,t) = a*(k) a(k, to) = a(k). (3.1.82)

The corresponding integral kernel can be immediately written down, using relation (2.3.57):

Ky (@*(k), a(k); t, to) = /Da*(k, )Da(k, 7) @(p{/d3ka*(k,t)a(k, t)}
t
x exp{/ dr/d3k[—a*(k, nak, t) — ioka*(k, vack, 7)]
to

t
—i/ dr V[a*,a]}. (3.1.83)
1

0
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Representation (3.1.83) allows us to derive very easily the path-integral representation for the S-matrix.
To this aim, we can use a nice property of kernels obtained from normal symbols. Namely, if some
operator A hasakernel Ka(@*(k), a(k)), the operator

ei ﬁot A\efi ﬁoto
has the kernel (cf (2.3.153)) _ .
Ka(a* (k)€ a(k)e '), (3.1.84)

The latter substitution only has influence on the boundary conditions (3.1.82). Hence, the kernel of the
S-matrix is obtained from (3.1.83) with the help of the infinite time limit:

Ks(@*(k), a(k)) = tirgo Ku (@*(k), a(k); t, to)

to——o0

= lim /Da*(k, t)Da(k, r)exp{/dSka*(k, tya(k, t)}

to——o0

t
x exp{/ dt/d3k[—a*(k, nack, v) — ioka*(k, )ack, 7)]
to

t
—i/ drV[a*,a]}
to

= tiTo /Da*(k, )Da(k, 7) exp{/dg’k%[a*(k, tha(k, t) +a*(k, to)a(k, to)]}

to——0o0

t
x exp{i/ dr/d3k [%(a*(k, na(k, t) — a*(k, v)ack, 1))
to

t
— wxa*(k, T)a(k, r)} —i | drV]a*, a]} (3.1.85)

to
with the conditions
a*(k,t) = a*(k) exp{iwkt} a(k, to) = a(k) exp{—iwxto}. (3.1.86)

The last expression in (3.1.85), which has a more symmetrical form, has been derived using integration
by partsin the exponent.

& Smatrix for a scalar field in the presence of an external source and generating functional for
Green functionsin quantum field theory

Let us calculate expression (3.1.85) for an infinite collection of oscillatorsin afield of external forces. In
other words, we shall calculate the S-matrix for a scalar field ¢ in the presence of an external source, i.e.
with a potential term of the form

Vi(p) = =IX)e(X). (3.1.87)

Interms of the variables a*, a, the functional V[a*(k), a(k)] reads as
Vj[a*(k), a(k)] =/d3k(3~(t, kya* (k) + J*(t, kack)) (3.1.88)

where

Jt, k) = — - d3r ek 3, r). 3.1.89
(t, k) 2k0<27r) f re (t,r) ( )
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The direct physical meaning of (3.1.85) with potential term (3.1.88) is the S-matrix for scattering of
particles on the external classical source J(x). However, as we have learned in chapter 1 (section 1.2.8),
explicit calculation of such path integrals allows usto find (viafunctional differentiation) any correlation
functions easily. In quantum field theory, a path integral with alinear potential term also playsthe role of
agenerating functional and of abasic tool for the perturbation expansion.

Since path integral (3.1.85), (3.1.88) is quadratic the stationary-phase method gives an exact result
for it (cf section 2.2.3). The extremality equations are as follows:

a(t, k) +ioKa(r, k) +iJ(t, k) =0
a*(r, k) —iw(K)a*(r,k) —iJ*(r,k) =0 (3.1.90)
a*(k, t) = a*(k) exp{iwkt} ack, to) = a(k) exp{—iwkto}

and the solution is found to be

a*(z, k) = a*(k)e* — ie'“’kT/ dse 'S J*(s, k)
. (3.1.91)

a(z, k) = a(k)e ikt — jg-ioxt Jo dsees J(s, k).

Substituting this solution into the exponent of (3.1.85), we obtain in the limit of the infinite-time interval
an expression for the kernel of the S-matrix:

Kgla*, a; J*, J] = exp{ / d3k [a*(k)a(k)

; > 3 * okt o—iKr —iwkT S KT
+ (27032 2ax /_Oo dr /de rJ(, n@* ke*re™ +ak)e ke )
1 1

00
_ drd d3 d3 '3 , eik(rfr’) 7iw|t7$\J : ’ )
—k —(271)3 /;Oo tds - rd’r'd(z,r) e (s, r)

(3.1.92)

Thisformulais a generalization of the corresponding expression for asingle oscillator in an external field
(recall that in problem 2.2.14, page 198, volume |, we calculated the transition amplitude (2.2.200) for
one oscillator in an external field with fixed initial and final positions in contrast with (3.1.92), where the
boundary conditions are imposed on the oscillator variables).

Note that we have put the fluctuation factor in (3.1.92) equal to unity. The reason for this is the
definition of the phase-space integral as the ratio (2.3.77) and the fact that the first term in the exponent
of (3.1.92) givesthe correct kernel for the unit operator. On the other hand, let us rescale the frequencies
and external source by afactor A: wx — Awk, J — AJ. Then, inthe limit A — 0, the Hamiltonian
(3.1.79), (3.1.87) vanishes, turning the S-matrix into the unit operator. Simultaneously, the second and
third terms in the exponent of (3.1.92) become zero too, leaving the correct expression for the kernel of
the unit operator. This provesthat the fluctuation factor indeed equals unity (cf also the calculation of the
scattering operator in non-relativistic quantum mechanicsin chapter 2, equations (2.3.150) and (2.3.151)).

Thefirst term in the exponent of (3.1.92) suggests that it is reasonable to pass to the normal symbol
for the S-matrix. Therelation (2.3.57) between a kernel and the normal symbol shows that the transition
to the normal symbol for (3.1.92) just reduces to dropping the first term in the exponent. The essential
advantage of writing the S-matrix as the normal symbol is that the remaining termsin (3.1.92) can be
presented in an explicitly relativistically invariant form. Indeed, the term bilinear with respect to the
source function can be rewritten with the help of the relativistic causal Green function D¢(x) which plays
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o C
N ‘ Wk

Figure 3.2. The contour C of integration in the complex plane KO, in the representation (3.1.93) for the causal Green
function Dc.

acrucial role in any formulation of quantum field theory (see e.g., Bogoliubov and Shirkov (1959) and
Itzykson and Zuber (1980)):

def 4y, ikx 1
D = — K — 1
o) (2n)4/d © k2 —m2 +ie (3.1.93)
1 dkdk?dk® k0
= — —IKr gmloklX7l 1.94
(27r)4/ Sion e e (3.1.94)

Therule of bypassing the singular pointsin the explicitly relativistic invariant expression (3.1.93) for D¢
is defined by theinfinitesimal addition +ie in the denominator of theintegrand, asillustrated in figure 3.2.
Recall that D¢(x) is one of the Green functions of the Klein—Gordon equation

(O + M%) De(X) = §2(X). (3.1.95)

The term which is linear in the source J(x) in (3.1.92) can be rewritten via the solution ¢g of the
homogeneous (with zero right-hand side) Klein—Gordon equation:

o

®o(X) Eef /d4k5(k2 _ m2)[a*(k)eikx + a(k)e—ikx]

(27.[)3/2

1 % A |
(2n )32 —j@ [a* (k)d KX =KD) 1 a (ke 10—k, (3.1.96)

Thefirst line in (3.1.96) is explicitly Lorentz invariant. In the second line, it isimplied that k® = wx =

k2 + m? and thus
(04 m’)go =0. (3.1.97)

In terms of ¢o(x) and D¢(X), the normal symbol for the S-matrix takes the relativistically invariant form
Solwo; J1 = exp {i / d*x J(X)po(X) + / d*x d*x’ J(X)De(X — x/)J(x’)}. (3.1.98)

Inthisformula, we have substituted the pair of oscillator variablesa*, a by the singlefield ¢o because, due
to definition (3.1.96), they arein one-to-one correspondence. The subscript ‘0" of the S-matrix functional
indicates that there is no self-interaction in the model under consideration (it exists only in interactions
with an external source).
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<& Generating functional for Green functionsin scalar field theory

If we put go = 0 or, equivalently, a*(t, k) = a(tp, k) = 0, the normal symbol for the S-matrix turnsinto
the generating functional for Green functions Z[J(x)]:

213001 € Slgo; Ilg0 (3.1.99)

(this definition is valid for afield Hamiltonian with an arbitrary interaction term). In particular,

o

Zold0] & Solgo; J]I<po=o=/D§0(X) exp{i/d“x [£0(<p(x))+J(x)<p(x)]}

exp{ / d*x d*x’ J(x)De(x — X')J (x’)}. (3.1.100)

The direct physical meaning of Z[J(x)] isthe transition amplitude from the vacuum state |0) to the same
vacuum state in the presence of an external source J(x). Thisis clear from the following arguments. Let
us consider anormally ordered operator

o
A@'(k).aky) = / d3k d3k’ Con (k, K') @' (K))™@(K')"
m,n=0
and the corresponding normal symbol
oo
A@*(k),ak) = > / d®k a3’ Cmn (K, K') (@ ()™ @(K')".
m,n=0
Then, using the definition of the vacuum state, i.e.
ak)|0y =0 for al k

we obtain

(0|A(a*(k), a(k'))|0) = / d3k d3k’ Coo(k, K')
= A@*(k), a(k’))la (k)=a(k)=0- (3.1.101)

Thus any normal symbol with a zero value for its arguments, and hence Z[J(x)], is equal to the vacuum
expectation value of the corresponding operator.
The functional derivatives of the generating functional give the Green functions. In particular,

8 8

53(x) 8I(X) = De(x — X) = (O T@0)G(X))) -

J=0

Zo[J]

Therefore, Zo[J] generates the causal Green function, in other words, the vacuum expectations of
the time-ordered products of the field operators. This observation can be expanded to the generating
functional Z[J] for an action with an arbitrary interaction term and to an arbitrary Green function: Z[J]
generates vacuum expectations

8 8 8

31003300 3300 = (0T (@(X)@(X2) - - - §(Xn))|0) (3.1.102)

J=0

Z[J]
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of time-ordered products of field operators. The general reason for thisfact isthat such a product provides
an appropriate order for the field operatorsalong the trgjectoriesin the path integral. We suggest the reader
verifies the correspondence between path integrals and vacuum expectations of time-ordered operator
products explicitly (problem 3.1.2).

We shall return to the physical meaning of the generating functional Z[J(x)] and the technical merit
of its use in section 3.1.5. However, before then, we should introduce the path-integral construction for
fermionic fields which describe systems of an arbitrary number of spi n—% particles.

3.1.3 Spinor fields: quantization via path integrals over Grassmann variables

In the preceding subsection we presented the path-integral formalism for the quantization of scalar field
theory. The latter describes systems of an arbitrary number of scalar, i.e. spin-0, particles obeying Bose—
Einstein statistics. In this subsection, we present the path-integral approach to the quantization of spinor
fields. The consideration of fermionic systems with a finite number of degrees of freedom in section 2.6
and the scalar field theory in the preceding subsection provide a good basis for generalization to systems
with an arbitrary number of fermions.

< Path-integral quantization of spinor fields

Aswe havelearned in section 2.6, the path-integral quantization of fermionic systems uses anticommuting
(Grassmann) variables. For spinor fields these variables are the anticommuting counterpartsbi, b, ¢;, ¢
of the operatorsE, [ satisfying the commutation relations (3.1.68). The anticommutation relations
for the former are obtained from those for the latter by putting all right-hand sides in (3.1.68) equal to
zero.

Let us consider again, asin the bosonic case, the basic example of a spinor field interacting with the
external sources n(x), 7(x). Note that for fermionic systems, the external sources are aso chosen to be
Grassmann variables. The Hamiltonian of this system reads as

3
H[b* b; c*, c] = /d3 [i&(r) D Vi (n) +my (DY () + 9 (Hn() + ﬁ(X)w(r)}

j=1
2

= / d3k [k (b (K)bi (K) + ¢ (K)ci (K))
i=1

+ & (4, Kb (k) + b (K& (t, k) + &*(t, ke (k) + ¢ (g, k). (3.1.103)
In the latter expression, we have introduced the new sources
& (t, k) = uin(t, k) ¢t k) = vt k)

where 7(t, k) isthe Fourier transform of 1 (x):

~ 1 i
At k) = W/d3r ek, r)

(we have used the orthonormality of the spinorsu; and vj, i = 1, 2, cf (3.1.66)). Combining the results
and methods of sections 3.1.1 and 2.6, we obtain the kernel of the S-matrix operator for the Hamiltonian
(3.1.72):

Ks(b*, c*;b,c) = tIim /Dbf(t, K)Db1(t, k)Db3(t, k)Dba(z, K)DC; (t, K)Dey(t, K)
—00

to—>—o0
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2
x DEs(z, K)YDea(t, k) exp{ > E / d3k (b (t, K)bi (t, k) + b*(to, k)b (to, k)

i=1
+ ¢'(t, k)i (t, k) + ¢ (to, K)Gi (to, k))

t
1 . .
+i / dr [/d3k o (B (z, 10bi (7, K) — b (z, Kb (7, k)
to
+ ¢ (z, k)ci (z, k) — ¢ (z, k)¢ (7, k) — H[b*, b; c*, C]j|j|} (3.1.104)
where we keep by, ¢; fixed at the initial timeto and bf", ¢* at thetimet:
bi (to, k) = by Ci(to, k) = ¢
bf(t, k) =b*  c*(t,k) =c.
Calculating integral (3.1.104) by the stationary-phase method is quite similar to the case of the scalar field.

To obtain an explicitly Lorentz-invariant expression, we have to pass again to the normal symbol for the
S-matrix which reads as

Slb*, c*; b, ¢, nl = eXD{i/dx dy (X)) S(x — y)n(y) + i/dX(f}(X)l/fo(X) + Yo(X)n(X))

(3.1.105)
where S(x — y) isthe causal Green function of the Dirac equation

2
_ .1 31 ey 01y 0 _ 0
(&»mx—w—-ﬁagﬁazafdkammwx—w—kp<—ym

x (via ()i (K) + Uia (KU (K)).

Using the completeness (3.1.67) of the spinorsu;, vj, we can write the spinor Green function in matrix

form: L ik )
o 4, eXp{—ik(x —y
S0y =~ g [ A% SRCEEE (3.1.106)

The field ¥ in (3.1.105) is expressed in terms of the variables by, b*, ¢;, ¢ via the Fourier transform
(3.1.65) (and, hence, ¥o(x) in expression (3.1.105) for the normal symbol of the S-matrix is the solution
of the free Dirac equation).

Again, similarly to the case of a scalar field, the symbol (3.1.105) with zero field v (or, equivalently,
with by = b* = ¢ = ¢ = 0) turnsinto the generating functional for the Green functions of free spinor
fields, that is for vacuum expectation values of time-ordered products of spinor field operators:

Zoln, n] = Slb*, ¢*; b, ¢; 7, nllb*=c*=b=c=0- (3.1.107)

We shall consider this topic from a general point of view and in more detail in the next subsection.

3.1.4 Perturbation expansion in quantum field theory in the path-integral approach

Let us now consider the Smatrix kernel and the generating functional for Green functions in the case
of an arbitrary potential V (x). As we know, e.g., from consideration of the non-relativistic scattering
operator (section 2.3.3), we may hope to calculate the path integrals for rather exceptional cases of non-
trivial potentials (using some special methods, e.g., transformations analogous to those in section 2.5). In
the general case, we are confined to using approximation methods and one of the most important among
these is perturbation theory.
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<& Formal calculation of the path integral for the S-matrix in scalar field theory with an arbitrary
self-interaction and perturbation expansion

In fact, the congtruction of the S-matrix (or the generating functionals) for linear potentials in the
preceding subsection supplies uswith all the necessary ingredientsfor devel oping the perturbation theory.
The basic observation is based on the following obvious formula:

S S N S R iy
eOe) 9 n) = T o TS e T 530m) eXp{'/d Xw(X)J(X)} b, (G09
Thisformulaallows us to write any functional ®[¢(x)] in the form
_ 1 6 . 4

Plp(X)] =D [Taj(x)]exp{lfd X(p(X)J(X)} " (3.1.109)
In particular,
exp{—i/d4xV(<p(x))} =exp{—i/d4xV(_} ) )}exp{i/d4x<p(x)J(x)} . (3.1.110)

i1 8J(X) J=0

Thefirst exponential on theright-hand side of (3.1.110) is understood in the sense of the Taylor expansion,
so that, in fact, we have an infinite series of variational operatorswith the raising power of the functional
derivative. If the potential term V (¢(x)) contains a small parameter, we can restrict the expansion to the
first few terms and cal culate the functional with the desired accuracy.

Thus, to calculate the functional integral (3.1.85), defining the S-matrix kernel for an arbitrary
potential, we first introduce an auxiliary additional potential term (3.1.87). Now we can substitute the
functional exp{—i [ d*x V (¢(x))} by theright-hand side of (3.1.110) and movethe variational derivatives
out of the path-integral sign. The rest of the path integral coincides with that for the linear potential
which we have already calculated. Thus, using result (3.1.98), we can immediately write the formal
expression for the normal symbol of the S-matrix describing the scattering of scalar particles with an
arbitrary interaction:

* — = —i 4 } °
S[a,a]=S[<PO]—eXp{ '/d Xv(iaJ(x))}

X exp{i/d4x<p(x)J(x) + lZ/dx dy J(x)De(x — y)J(y)” (3.1.111)

(recall that g and a*, a are in one-to-one correspondence, cf (3.1.96)). Expanding this functional as a
power seriesin ¢o:

1
Sipol =) — / d*x1d*z - dn Six1, Xz, - -, Xn)@o(X1)Po(X2) - - - 0(Xn) (3.1.112)
n=0

we obtain the so-called coefficient functions S, (X1, X2, . . ., Xn) of the S-matrix. In the operator approach,
these appear in the process of expanding the S-matrix in a series over normal products of free
fields. Convolution of these coefficient functions with the initial ¥1(X1), ¥2(X2), ..., Y (%) and final
Y+1(X41), Yi42(X1+2), - . ., Yn(Xn) Wavefunctions of the particles participating in the scattering gives
the corresponding probability amplitude:

(Y141, Vi42, - -+, Yo OUL| YL, Yo, ..., Y5 iN) = /d“xld“xZ.'.d“xn
X Y1(X)P2(X2) - - Y1 (XD S (XL, X2, - ., Xn) V141 (X4 D V142X 42) - - - ¥n(Xn) (3.1.113)
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(the labels ‘in” and ‘out’ denote the statesat t — —oo andt — oo, respectively). From expansion
(3.1.112) it is clear that the coefficient functions S, can be obtained by forma differentiation of the
functional S ¢o] over ¢ (though we remember that ¢ is the solution of the free Klein—Gordon equation,
in other words, it belongsto the mass surface):

P P
Slpo)1| . (3.1.114)

Si(X1, X2, ..., Xn) =
" Spo(x1) Spo(Xx2)  S¢0(Xn) 000

Therefore, the functional S[gg(x)] is called the generating functional for S-matrix coefficient functions.

We have called expression (3.1.111) ‘formal’ because we cannot calcul ate the action of the complete
variational operator on the right-hand side explicitly and we have to use its Taylor expansion up to some
power of the functional derivative, i.e. to use the perturbation theory approximation.

Example 3.1. Let us consider, as an example, afield theory defined by the Lagrangian density

1
L= 5[(8u<p)2 —m2p?] — %(p“ (3.1.115)
s0 that the self-interaction term has the form
V(p) = %so“. (3.1.116)

The constant g defines the strength of the scalar field self-interaction and is called the coupling constant.
Thefactor 1/4! isintroduced for further technical convenience. Because of the form of the potential term,
the theory with Lagrangian (3.1.115) is called the ¢*-interaction model (or simply ¢*-model).

If the coupling constant is small enough, we can expand the first exponential on the right-hand side
of (3.1.111) in a Taylor series and calcul ate the generating S-matrix functional up to the desired accuracy
(the power of the coupling constant g). For example, up to second order, the S-matrix functional for the
¢*-model becomes

_ g s VY 1,9\ s VY s 0\
S[(pO]_[l_'Z!/dX (5J(x)) +§('Zz) /dXdy (8J(x)) <T(y)> +}

xexp{i/d4x<po(x)J(x)+I—Z/dxdyJ(x)Dc(x—y)J(y)}

(3.1.117)
J=0

so that in this approximation we have the following expression for S[go]:

(i) Inthe zeroth-order perturbation theory, i.e. if we use only the first term (unit) in the square brackets
on theright-hand side of (3.1.117), the Smatrix istrivial:

SO[ge] = 1. (3.1.118)

This result is physically obvious: this zeroth-order approximation corresponds to a total neglect of
the potential term and in the absence of any interaction, the S-matrix operator is equal to unity (cf
(3.1.76)).

(ii) Inthefirst order, differentiation gives

SV o] = %[_ i / d*x pg(x) + 6D¢(0) / d*x g3(x) + 3iD2(0) / d4x] (3.1.119)
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(iii) The second-order term has the form:

1 2 ,
$Plgol = -5 (3) / d*x d*y (g (¢ (y) + 16ig3 ()¢S (y) De(x — ¥)

— T208(X)9§(y)DZ(X — y) — i9690(X)@o(y) D3 (X — y) + 24Dg(X — y)

+ 12ip§ (x) @3 () De(0) — 695 (Y) DZ(0) — 96po(X)p3(Y) De(X — y) De(0)

— 3605 (X)@g(y) DZ(0) — 144ip3(y) D(x — y) Dc(0) — 36ip3(y) D3(0)

— 144ipo(X)po(y) De(x — Y) DE(0) + 72DZ(x — Y)DZ(0)]. (3.1.120)

S o S

<> Remark on the renormalization of field theories

As can be seen from (3.1.119) and (3.1.120), the perturbation expansion terms contain the causal Green
function at the zero value of the argument, D¢(0). Thisis an undefined (infinite) quantity:

/d“k 1 . (3.1.121)

D0 = K2 —m? +ie

(@)t

Thus, the perturbation expansion (3.1.117)—(3.1.120) requires a more thorough treatment and some
improvement. We have aready mentioned the problem of divergence in quantum field theory (cf
(3.1.19) and (3.1.38)). In the case of the simple divergence of the ‘zero-oscillation’ energy Eg, the
solution of this problem was quite obvious: we just redefined the background energy or, equivalently,
the Hamiltonian: H — H — Ep, counting only the difference which is physically observable and finite.
Essentially, the sameideaallows usto overcomethe problem of divergencein the so-called renormalizable
field theories, in general. The point is that divergent terms in quantum-mechanical amplitudes for a
system described by some renormalizable field theory can be combined with the initial parameters of
the corresponding Lagrangian (such as the masses and coupling constants). Sometimes, these initial
parameters are called bare masses and coupling constants, while their combinationswith divergent terms
are called renormalized parameters of the theory. Since all physically measurable quantities only contain
these combinationsand not solely the bare parameters, we can claim that only the renormalized parameters
correspond to the physical masses of the known particles and to their coupling constants. In other words,
we substitute combinations of the bare parameters and corresponding divergent terms by finite values
known from physical measurements. This procedure is called the renormalization of a quantum field
theory. In order for this procedure to be mathematically meaningful, at intermediate steps we have to
work with aregularized theory. This means that we have to consider the actual model as a limit of some
other theory which does not contain the divergences. Then we carry out, at first, all the renormalization
procedure for the regularized model and only at the final step do we take the limit corresponding to the
initial field theoretical model. In fact, we have aready dealt with an example of regularization: field
theoretical systemsin this chapter were introduced as the limit of systemswith a finite number of degrees
of freedom defined on a lattice (which, of course, have no divergence problems). Clearly, thisis the
most physically transparent regularization of field theories. Its obvious shortcoming is that it violates
the essential symmetries of afield theory on continuous spacetime: rotational, Lorentz and trandational.
There exist many other regularization schemes preserving spacetime symmetries and adjusted to other
specific invariance properties of field theoretical models, which we shall meet later in this book.

All the redlistic field theoreticall models possess the so-called multiplicative renormalizability.
Roughly speaking, this property means that al the ultraviolet divergences can be absorbed into certain
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factors, related to the renormalization of the bare masses and coupling constants. For example, in the case
of scalar ¢*-field theory we define:

0 =2,"pg
9=24'Z298 (3.1.122)
m? = mj + ém?
where ¢g, gs, mg are the bare field, coupling constant and mass, respectively and Z,, Zg are the
renormalization constants (depending on the regularization parameters). Then, after substituting the bare
quantities with the renormalized ones according to (3.1.122), al coefficient functions of the S-matrix and
all Green functions can be made finite (renormalized) by multiplying them by the appropriate power of
the Z,-constant.

Since path-integral techniques do not bring anything essentially new to the regularization and
renormalization procedure, we shall not describeit in detail, referring the reader to textbooks on quantum
field theory (e.g., Bogoliubov and Shirkov (1959) and Itzykson and Zuber (1980)).

<& Scattering amplitudesfor scalar particlesand first encounter with Feynman diagrams

Combining formulae (3.1.113) and (3.1.114), together with the perturbation expansion of the type
(3.1.117), dlows us to calculate scattering amplitudes. For example, for the scattering of two scalar
particles (2 — 2-scattering), we obtain in the second order of the perturbation expansion:

(¥ (P3)¥ (Pa); out|yr (P (P2); in) = [— gy (P3)¥ (Pa) ¥ (pL) ¥ (P2)

- (ig)zw(ps)ww)( / d*k De(k)De(k — p1 — pz>)w(p1)w<pz)}a(pl+ P2 — P3— Pa).
(3.1.123)

Here we assume that the particles have definite momentain the initial and final states (thisis a standard
situation in scattering experiments) and that the terms in expansion (3.1.120) containing the divergent
quantity D¢(0) are removed by the renormalization procedure. Dc(p) is the Fourier transform of the
causal Green function; from (3.1.93), it is clear that

De(p) = > (3.1.124)

—m2+ig’
We see that the integral in (3.1.123) is a so logarithmically divergent and hence requires regularization.

The different termsin the perturbation theory expansion of the S-matrix or any other quantity can be
graphically represented by the well-known Feynman diagrams. In these diagrams, each graphical element
isin one-to-one correspondence with the building blocks of the perturbation expansion. In particular, for
the ¢*-model, this correspondence is summarized in table 3.1. Using these graphical elements, the first-
and second-order termsin the expansion (3.1.123) are depicted in figures 3.3(a) and (b), respectively.

We shall not carefully derive the Feynman rules for the construction of amplitudes from the
diagrams (see the textbooks on quantum field theory). A short practical collection of these rules is
presented in supplement I11. Note that, while in the standard operator approach the graphical method of
Feynman diagrams is extremely important because it considerably simplifies complicated combinatorial
calculations, in the functional path-integral approach all calculations in perturbation theory are reduced
to simple manipulations with derivatives. Therefore, generally speaking, we can quite comfortably work
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Table 3.1. Correspondence rules for the ¢4-model.

Physical quantity Mathematical expression  Diagram element
Wavefunction ¥ (p) -—
1
Causal Green function (propagator) D¢=—-——F5——F5—— — o
p2 —m2 +ie
Interaction vertex —ig .
k—p1—p2
P3 P1 P3 P1
P4 p2 p4>®§
(@ (b)

Figure 3.3. Feynman diagrams for the ¢*-model in second-order perturbation theory.

directly with expressions of the type (3.1.117). However, the Feynman diagrams still prove to be very
illustrative and a convenient accompanying tool.

All the formalism of perturbation theory, together with the graphical Feynman techniques, can be
straightforwardly generalized to fields with higher spins, in particular to anticommuting spinor fields.
A more convenient approach to field theoretical calculations, however, uses Green functions (vacuum
expectations of chronologically ordered products of quantum fields). We shall proceed to discuss this
technique in the next subsection.

3.1.5 Generating functionals for Green functions and an introduction to functional methods in
guantum field theory

Green functions G™ in quantum field theory, defined as vacuum expectations of chronological products
of quantum fields

G Xy X, ... Xn) 2 (OIT(@(xD)@(X2) - - - p(xn)[0) (3.1.125)

play an outstanding role in the field theoretical formalism. Their exceptional significance is explained
by the fact that they are convenient for practical calculations and, at the same time, contain complete
information about quantum systems. In particular, the spectrum of a system (including bound states) and
corresponding wavefunctions can be extracted from the Green functions by studying their singularities.
The relation of the Green functions to the scattering amplitudesis established by the so-called reduction
formula within the Lehmann—Symanzik—Zimmermann formalism (Lehmann et al 1955) (see aso, eg.,
Bjorken and Drell (1965) and Weinberg (1995)). For a scalar field, the reduction formulareads as

i m+n m m
(Wpgs -+ s Yps OUL YKy, - . ., Yk, : iN) = /d“x- /d“y-
P1 P 1 (\/wa) E |jl:[l |

X Yie, (YD ¥ () Ty, +mA@y; + M) 0T @YD) - 9(Yne(x) - - 9(xm)[0)  (3.1.126)
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where Z, is the field renormalization constant and we assumed for simplicity that all p; # kj (in the
general case, additional terms corresponding to zero scattering angle appear). Analogous formulae exist
for any other fields (with higher spin).

Thus, we can concentrate our efforts on the study of different Green functions or their generating
functional Z[J(x)] introducedin section 3.1.1. For an arbitrary interaction term, the generating functional
is defined asin the free theory (cf (3.1.99)):

def
Z[I(X)] = Seo; Ilge=0

= /D(p(x) exp {i / d*X [L(@(X) + IX)@(X)] } (3.1.127)
This functional produces the Green functions (vacuum expectations) (3.1.125) for the field theory with
arbitrary (self-) interaction terms defined by the Lagrangian density £(¢(x)). We suggest to the reader, as
auseful exercise, to derive the expression (3.1.127) directly from the path integral (3.1.74), without using
the S-matrix functional (see problem 3.1.2, page 39).
< Perturbation seriesfor the Green functions

Similarly to the case of the S-matrix symbol, we can represent the generating functional for field theories
with an arbitrary interaction as an infinite series of variational operators acting on the explicit form of the
generating functional for the free theory, in the presence of an external source:

_ i gaey (18
23] = exp{ |/d XV (i M()()) }ZO[J(X)]. (3.1.1298)

Recall that Z¢[J] isthe generating functional for the free theory (i.e. for the Lagrangian with V (¢(x)) =
0) in the presence of an external source J(x) and path integration of it gives the following explicit
expression:

Zo[J] = exp {IE / d*x d*y J(x)De(x — y)J(y)} ) (3.1.129)

In problem 3.1.4, page 40 we suggest deriving the expression (3.1.129) for the free-field generating
functional by another, perhaps the simplest, method of square completion.

L et us consider again the ¢*-model. Expanding the exponential in (3.1.128), we obtain a perturbation
series for the Green function generating functional:

Z[3] = Zo[I1A+gZP[IN+ ?Z2P[I)+ - ). (3.1.130)

Here 20, 2@ are obtained by functional differentiation and have the form

zZ01= - %[fd“x d%y1 - - - d*ys De(X — Y1) De(X — Y2)
x De(X — y3) De(X — y2) I (y1) I (¥2) I (y3) I (Ya)
—i3! / d*x d*y; d*y2 De(x — y1) De(X — ¥2) De(X — X) I (Y1) I (Y2)

+ 3! / d*x D2(x — x)] (3.1.131)
i
2(31)2

1
22031 = S(ZVID2+ / A dxo dys - - - dtye
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Y1 Y3

x )

y1 X Y2

x

Y2 Ya

Figure 3.4. Graphical representation of the first-order contributions to the Green function generating functional in
the ¢*-model.

x De(X1 — Y1) De(X1 — ¥2) De(X1 — y3) De(X1 — X2) De(X2 — Y1)
X De(X2 — ¥2) De(X2 — y3) I (Y1) I (Y2) I (¥3) I (Ya) I (¥5) I (Ye)

3
+ 2402 / d*xq d**2 d%yy - - - d*ys De(x1 — y1) De(X1 — Y2) DE(x1 — X2)
X Dc(X2 — ¥3) De(X2 — Ya) I (Y1) I (Y2) I (Y3) I (Ya)
2
/ d*x1d*x2 d*yy - - - d*ys De(x1 — y1) De(X1 — X1) De(X1 — X2) De(X2 — Y2)

o
X I;)c(Xz — ¥3)Dc(X2 — Ya) I (Y1) I(y2) I (¥3) I (Ya)

|
-5 / d*x1 d*x2 d%y1 d*y, De(x1 — y1) De(X1 — X1) De(X1 — X2)
x De¢(X2 — X2)De(X2 — y2) I (Y1) I (¥2)
i
-5 / d*xq d*x2 d*y1 d*y2 De(x1 — Y1) D2(X1 — X2) De(X2 — X2) De(X1 — ¥2) I (Y1) I (Y2)

|
-5 d*xq d*x2 d%y1 d*y2 De(x1 — y1) D3(X1 — X2) De(X2 — ¥2) I (Y1) I (y2)
+ (J-independent terms). (3.1.132)

Note that the most convenient way for field theory renormalization uses Green functions, i.e. we first
renormalize the Green functions and then al the other physical quantities are expressed through them.
Therefore we keep in (3.1.131) and (3.1.132) the divergent terms, assuming that they are suitably
regularized. We also keep formal arguments of the type (X — x) in the causal functions, though, of
course, we should just write Dc(0). We do this for easier comparison with the corresponding graphical
representation in terms of Feynman diagrams. To construct these diagrams, we have to add a graphical
element corresponding to the source J(x); this shall be represented as follows: J(x) = e-. The first-
order contribution (3.1.131) is depicted in figure 3.4. The first term of the second-order contribution
(3.1.132), being the power of the first-order contribution Z™, is represented by a disconnected graph
(diagram). Since such terms are powers or products of terms which correspond to connected diagrams,
we can reduce the study to the latter only. The second-order J-dependent terms represented by connected
diagrams are depicted in figure 3.5 (we have dropped all J-independent terms because they vanish under
the action of the functional derivatives and hence do not contribute to the Green functions).
For systematization and further use, let us recall some nomenclature from graph (diagram) theory:

Diagrams containing pieces not connected by lines are called disconnected diagrams.
If any vertex of a diagram can be reached from any other vertex by moving along the lines of the
graph, the diagram is said to be connected.

e One-particle irreducible (OPI in abbreviation) diagrams cannot be converted into disconnected
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Y1 Ya y1 Y3
\(1 Xz/
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Figure 3.5. Connected diagrams contributing to the second-order contributions to the Green-function generating
functional in the ¢*-model.

graphs by cutting just oneinternal line.
A similar terminology is applied to the actual Green functions:

e Parts of Green functions represented by connected and OPI diagrams are called connected Green
functions W, and OPI Green functions I'y,, respectively.
e Truncated (amputated) connected Green functions W™ are defined by the relation:

Wn(xl,...,xn)=/d4y1md4anz(X1, y) - Wo(Xn, Y)W (1, ..., yn). (3.1.133)

Here Wa(X;, Yi) are two-point connected Green functions (total propagator).
Some lower-point Green functions have special names:

e The zero-point connected Green functions Wp, which do not have external lines, are said to be
connected vacuum loops.
e A connected one-point Green function (with one external line) is called a‘tadpole’.
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e  The Green function DY % W, is called the total propagator to distinguish it from the bare
propagator D¢ (causal Green function of the free Klein-Gordon equation).

Different Green functions are obtained by differentiation of the expansion (3.1.131), (3.1.132). For
example, thetermswith four source factors contributeto the four-point Green functionin first- and second-
order perturbation theory.

< Generating functional for connected Green functions

It is helpful to construct the modified generating functional which only directly produces connected
Feynman diagrams. It appearsthat the logarithm

W01 € In 21300 (3.1.134)
of the functional Z[J(x)] satisfies this requirement: the functional derivatives of W[J(x)],

def S"W[J]
Wn(Xl, ceey Xn) = m 1o (31135)

correspond to connected Feynman diagramsand, according to the previous definition, are called connected
n-point Green functions Wh (X1, ..., Xn). The heuristic proof of this fact goes as follows. Consider the
obviousidentity:

InZ[J] = In{Z0[J](1+ Zal[J](Z[J] — Zo[JD)}
= InZo[J] + In{1+ (Z[I1Z, 3] - D). (3.1.136)

Expansion (3.1.130) allows us to rewrite identity (3.1.136) as a series in the coupling constant g
(perturbation expansion):

Wl = InZo[J]+ (g2 + ¢?2Z2@ +..) — 3(@2® + ¢?22@ +.. )2 ...
= InZo[J1+g2P + g% 2@ - 3(2M)H +- ... (3.1.137)

Thus, the contribution of the disconnected diagrams 1/2(Z™)2 to the 2@ (the first term in (3.1.132))
is indeed canceled out (by the second term in the parentheses) in the logarithm of the generating
functional. This result can be generalized to all disconnected contributions (see e.g., Itzykson and Zuber
(1980)). Note that the functional W[J] is insensitive to normalization factors multiplying the functional
Z[J] (an additive constant is absolutely inessential for generating functionals). This feature of W[J]
is convenient for heuristic smple methods of calculation of the corresponding path integrals (see, for
example, problem 3.1.4, page 40).

<& Variational equationsfor Green functions from path integrals

The so-called Dyson—-Schwinger equations (Dyson 1949, Schwinger 1951) are exact relations between
different Green functions. All these relations can be presented as one equation with variational
derivativesfor the generating functional Z[J]. The simplest way of deriving it isto use the path-integral
representation for Z[J] (Feynman and Hibbs 1965).
The key observation for this derivation is that the functional integration measure Dy (X) is invariant
with respect to the trandation
e(X) = o(X) + f(X) (3.1.138)
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where f (x) isan arbitrary function well decreasing at infinity (so that it belongsto the class of functionsto
be integrated over in the path integral). Thisinvariance of the measure (including the functional measure
for fermion fields, i.e. for Grassmann variables) can be easily verified with the help of the time-diced
approximation for the path integrals. The translational invariance implies that

/CDfp(X) exp{i(Sle] + Jo)} = /Dw(X)eXp{i(S[Wr fl1+ 3+ )} (3.1.139)
where S ¢] isan action for the field ¢ (x) and we have adopted here the shorthand notations
Jo = / d*x J(X)p(x). (3.1.140)
In theinfinitesimal form, equality (3.1.139) reads:
1) .
[ Pots s eplicsiol+ 301 =0 (3.1.141)
Sp(X)
or, after differentiation of the exponential,
1) .
/D<p(x) [% + J(x)} expli(Slg]l + Je)} =0. (3.1.142)

Using relation (3.1.108), we can rewrite (3.1.142) as the Schwinger variational equation for the Green-
function generating functional:

§Y¢]
dp(X)

The Schwinger equation is homogeneous and, hence, defines Z[J] up to a factor. Therefore, it is
convenient to substitute Z[J] with a functional W[J] = In Z[J] for connected Green functions. Then,
expanding W[J] in powers of J(x) and equating, in equation (3.1.143), the coefficients with different
powers of J(x), we obtain the infinite chain (system) of the differential Dyson—Schwinger equations for
n-point Green functions with increasing n.

+ J(x):| Z[J]=0. (3.1.143)
o=—i8/8J

Example 3.2. Let us consider as an example the simplest scalar ¢3-model with the action
1
Y] = /d“x <§<p(x)(D +m?)e(x) + %qﬁ(x)) . (3.1.144)

The renormalization of this mode! requires the addition of a ¢*-vertex and hence, rigorously speaking, it
is not self-consistent. However, thisfact is not important for our formal functional manipulations and we
choose this exampl e as the simplest one to illustrate the general functional techniques.

The Schwinger equation for this model takes the form

[/d“x’K w9 % +J(x)}Z[J]—O (3.1.145)
KGR TITSI00) T 250002 - -

where we have denoted by Kkg(x, x’) the integral kernel of the Klein—Gordon operator, i.e. for any
function f (x) from the domain of definition of the latter, Kk (X, x’) satisfies the equality

@A+m)fx) = /d“x Kka(X, X) f(X).
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Wnc>>—GI g & . De & o—

Figure 3.6. Graphical notation for the elements of the Schwinger equation (3.1.148), after the expansion (3.1.149).

In particular,

/d“x’ Kka(X, X)De(X — y) = /d“x’ De(X — X)Kka(X, y) = 8(X — V). (3.1.146)

Substituting in (3.1.145) 2Z[J] = exp{W[J]}, we obtain the equation for the generating functional W[J]
of connected Green functions:

i L1 8w g 82w <5W>2 B
/d X KKg(x,x)i 5100) 2 [SJ(X)Z + 530 + J(x) =0. (3.1.147)

For an iterative solution of this equation, it is convenient, at first, to convolute it with the function
[ d* I(X)De(X' — x):

- 2
/d“x’J(x/) oW %[/d“x/d“x J(X)De(X' = X) )

33 53(x)2
4.7 44 / r_ SW 2:|
+/d X d*x J(X)De(X" — X) (5J(x)>
- / d*x d*x J(x")De(X" — X) I(X). (3.1.148)

Expansion of the functional W[J] in powers of the sources:
%) in
W[J] = Z/d“xl oo d*n SWh (KL, - Xn) I0) -+ I (xn) (3.1.149)
n=0 :

convertsthe functional equation (3.1.148) into an infinite chain of differential equations, called the Dyson—
Schwinger eguations, for the connected Green functions Wi (X1, . . ., Xn) (by equating the factors with
equal powersof the sourcefunction J(x)). Itisillustrative to represent this chain of equationsgraphically,
using the Feynman-like notation depicted in figure 3.6. In this notation, the chain of equations for
connected Green functions is presented in figure 3.7. To illustrate the general formalism, the first two
equationsfrom the chain are explicitly depicted in figure 3.8. Multiplying the second equationin figure 3.8
by Kkg fromthe right and by W, 1 from the left, we obtain the equality for the so-called mass operator
(or proper energy) X of aparticle. The resulting equality for  has the graphical image as in figure 3.9.
In the latter figure, the element

@ = truncated Green function W3(")

denotesthe three-point truncated Green function (cf definition (3.1.133)).

In the same way we can derive the Schwinger equation for any field theoretical model with a
polynomial Lagrangian. The starting point is the trandational invariance of the path-integral measure
and hence arelation of the type (3.1.141) for al fields enters the model.
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+

NI =

Figure 3.7. Graphical representation of the Dyson—-Schwinger chain of equations for connected Green functions.

O )

O Ok

Figure 3.8. Graphical representation of the first two equations from the Dyson—Schwinger chain of eguations for
connected Green functions.

NI =

<> War d—Takahashi identities asthe result of a special change of variablesin the path integrals

We may consider more general transformations
¢ — F(X, {a}; ¢) (3.1.150)

of integration variables in path integrals which produce the generating functional for Green functions.
Any type of transformation forms a group and we assume that transformations (3.1.150) form a Lie
group with the set of parameters {a} (for some basic notions from group theory, see supplement 1V).
If transformations (3.1.150) have a unit Jacobian, then by changing the integration variables, we again
obtain the infinitesimal condition for measure invariance (cf (3.1.141)):

8
/Dw(X) </d4y8a¢(y)ﬂ) exp{Sl¢l} =0 (3.1.151)
So(y)
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KKG—WZ_l =

NI =

+

Figure 3.9. Equation for the mass operator .

where
da'.

al=0

dF(x, {a};
bop & 3 P (20

|

In the general situation, the equations obtained from (3.1.151) follow from the Schwinger equations and

hence do not provide new information about the Green functions. Indeed, after the substitution of 53¢

and §S[¢]/8¢ by variational operatorsasin (3.1.143), we obtain an equation for the generating functional
Z[J]intheform

LaLlscwZ[J] =0 (3.1.152)

where L5 and Ly are variational operators, the latter being the ordinary Schwinger equation operator
(the variational operator on the left-hand side of (3.1.143)). Thus, (3.1.152) follows from the Schwinger
equation. However, in special cases, the combination L4 L schw may proveto be alower-order variational
operator than just the Schwinger operator Lschy. This happens if terms with higher powers of the field
variablein the action functional S¢] are invariant with respect to the group of transformations (3.1.150).
The resulting relations are called Ward—Takahashi identities. These identities are extremely important
for the proof of the renormalizability of quantum gauge theories, including electrodynamics (Abelian
gauge theory) and the Yang—Millstheory (non-Abelian gauge theory). In the latter case, the identities are
called generalized Ward-Takahashi or Savnov—Taylor—\Ward—Takahashi identities. We shall discuss the
(generalized) Ward—Takahashi identitiesin some detail in section 3.2.7 devoted to quantum gaugetheories
(where path integrals find one of their most important applications).

<& Generating functional for one-particleirreducible Green functions

One-particle irreducible (OPl) Green functions play an important role in the renormalization of quantum
field theories (especially those theories with gauge invariance) as well asin non-perturbative calculations
(the so-called effective action method). Therefore, it is desirable to construct for them a generating
functional. This aim is achieved via a Legendre transformation of the functional W[J] generating
connected Green functions:

WJl— Tl¢]:  Té] = WI(@)] - / d*% $ () I () (3.1.153)
where the source J (x) on the right-hand side is expressed through ¢ with the help of the equation
def _SW[J]
$O0 = Wix) =~ N (3.1.154)

Recall that the Legendre transformation relates Lagrangians and the corresponding Hamiltonians of
physical systems, thus (3.1.153) is a formal analog of the transition from the Lagrangian to the
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Hamiltonian formalismin classical mechanics. Note al so that the direct physical meaning of the quantity
¢ (X) isthe vacuum expectation of the quantum field ¢ in the presence of the external source J(x):

#(x) = (0[9(x)|0)4 (3.1.155)

and thusit isthe classical counterpart of the field operator. In the literature, W is usually denoted by the
same letter as the corresponding field operator. We have denoted it by the slightly modified character ¢
to avoid confusion with the path integration variable ¢. The generating functional T'[¢] for OPl Green
functions is often called the effective action for the corresponding quantum field theory. The reason for
this name is that in the lowest approximation, I'[¢] exactly coincides with the classical action of the
theory.

Differentiation of the equality (3.1.153) taking into account (3.1.154) yields the relation

o SW sJ(y) 8
=/ - / d* J

3¢ (X) / y 8J(Y) $p(X) 89 (X) X ¢(X)JI(X)

= (3.1.156)

which explicitly defines J (for known I") as afunctional of ¢.
The following simple chain of equalities shows that the second derivatives of I'[¢] and —W[J] are
the kernels of the inverse operators:

50— y) 8I(X) /d4x, 8J(X) 8p(X')

T8Iy S (x) 8(y)

2 2
= — / iy — T W (3.1.157)
3P (X)dp(X') §I(X)8I(Y)

Thusthe two-point connected Green functionis easily expressed through the corresponding two-point OPI
Green function. Similarly, any higher connected Green functions can be expressed through OPI functions,
the diagrams of the connected Green functions being constructed from OPI partslinked by linesin such a
way that cutting any of these lines convertsthe diagrams to disconnected ones. Substituting the Legendre
transformation into the Schwinger eguation (3.1.143) allows usto present the functional equation directly
in terms of OPI functions and to develop the corresponding iterative (approximate, perturbative) method
of its solution.

As seen from our short discussion, once the Dyson-Schwinger equation (or Ward—Takahashi
identity) is derived from the path integral for generating functionals, further functional manipulations
(transitionsto connected, OPI Green functions etc) have no direct relationship with the main object of this
book, the path integral. Thus we shall not go further into a general consideration of functional methods
in quantum field theory, referring the reader to the special literature (see, e.g., Itzykson and Zuber (1980)
and Vasiliev (1998)). However, we shall meet important concrete applications of these methods combined
with the path-integral formalism in the subsequent sections.

<& Generating functional and Feynman diagramsfor the Yukawa model

All the consideration in the present subsection can be straightforwardly generalized to the case of several
fields and fields with higher spinsincluding fermion fields. In the latter case, the only peculiarity is that
after introduction of anticommuting integration variables and sources, as explained in section 3.1.3, we
must care about the order of all factors and Grassmann derivatives. Instead of a general consideration of
these generalizations, we shall discuss here an example illustrating the functional methods for a model
with spinor fields, namely for the Yukawa-interaction model, while in the subsequent sections we shall
consider concrete practically most important examples (types) of field theoretical models.
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The Yukawa model containsaspi n—% field ¥ (x) and ascalar field ¢ (x), with thefollowing Lagrangian
density: . }
where Lo(¢) and Lo(V, ¥) are the free Lagrangian densities (3.1.49) and (3.1.59) for scalar and spinor
fields, respectively; Lint(¥, ¥, ) defines an interaction of these fields, the so-called Yukawa coupling:
Lint(¥, ¥, 9) = g¥ ()Y ()9 (X). (3.1.159)

The path-integral representation for the generating functional reads as
Z(n,n, 3] = /Dw DY Dy eXp{i/d“X [Lo(@(X) + Lo(W(X), ¥ (X)) + Lint(¥(X), ¥ (X), 9 (X))

+ I (X) + ¥ (0n(X) + ﬁ(xwf(x)]}. (3.1.160)

Similarly to the case of the purely scalar theory, the starting point for developing the perturbation
expansion is the representation of the generating functional (3.1.160) in the form

16 16 156
21, n,u:exp{ﬁim( =L .——)}zo[ﬁ, 7, Jl (3.1.161)

iy isn isd
The generating functional Z¢[#, n, J] issimply given by the product of the generating functionalsfor the
free scalar and free spinor theories:
i

Zoli, n, ] =eXp{—i/d4Xd4y77(X)&(X— y)n<y)}exp{ /d“xd“yJ(x)Dc(x—y)J<y)}.

2
(3.1.162)
The expansion of (3.1.161) up to second order in the coupling constant g leads to
4 83
" ? 31 (X)8n(X)8 I (X)

g? dx 3 /d“y 53 N }Z -

2.J 7 7 8n008n003300 J 77 si(y)sn(ys(y) ot 7. J1
(3.1.163)

Since the differentiation refers to different fields, the calculation for the Yukawa model is even simpler
than for a scalar field with self-interaction. Nevertheless, the derivation of the terms in the second and
higher ordersisstill quitelaboriousand it is reasonableto exploit again the Feynman graphical techniques.

The generating functional Z[7, n, J] contains several fields and sources and therefore we need
different graphical elements for them. The correspondence rules for the Yukawa model are summarized
intable 3.2.

The differentiation in formula (3.1.163) gives a generating functional in the first Z1[7, n, J] and
second Z@[7, n, J] order of perturbation theory. In the diagram representation, they are represented as
follows:

¢
|
2B, n, 3] = NF__O S R Zolij, 1, I (3.1.164)
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Table 3.2. Correspondence rules for the Yukawa model.

Physical quantity = Mathematical expression  Diagram element

Propagators Dc(X—Y) —— —
SX—y) * *
|
|
Interaction vertex g S I
Externa sources J(X) -
17(x) —=
n(x) —=

s | €0+ OO~

$

|
T «F__O O R Zol7, 1, 9. (3.1.165)

Using table 3.2, we can easily trandate this result back to the algebraic form. The last term in
(3.1.165) corresponds to the disconnected part of the Green functions. A noticeable feature of theories
which include fermionsis that any fermionloop producesthe factor (—1). In functional formalism, thisis
a consequence of the anticommutativity of the Grassmann variables corresponding to fermion fields and
Sources.

3.1.6 Problems

Problem 3.1.1. Derive expression (3.1.40) for the dispersion of the smeared field ;..

Hint. Using expression (3.1.31) for the quantum field in terms of independent oscillatorswe readily obtain

(0|@2|0) = /d3k d3r d3r’ zi explik - (r — 1)} — (r2 +1"%)/(24?)
Wk

(272)®
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1 d3k e7k2A2 N 1
" 22m)3 ) 2w T oBAZame
Problem 3.1.2. Provethat the path integral

/ Do (X) (X))@ (X2)€S

gives the vacuum expectation

(OIT (p(X1)9(X2))|0)
of the time-ordered product of the field operators.
Hint. As ahint, we shall consider the simplified case of a quantum-mechanical system with one degree
of freedom. The field theoretical path integral is considered via a straightforward generalization: at first,
we consider a system with N degrees of freedom on a lattice and then pass to the continuum limit (cf

section 3.1.2).
We start from the matrix element

(@ tIT(AM @' (ty), aty)) AY @' (t2), A(t2))) |20, to)

where|a) = | Ta) representsthe (non-normalized) coherent state (cf (2.3.44)) for the creation—annihilation
operators @', a; |a,t) = expf{itH}|a) and A @T(t), a(t)) is some operator made of a'(t), a(t), the
latter being in the Heisenberg representation (this is indicated by the superscript ‘(H)’). We assume that
A @t a) iswritten in the normal form. Then, we obtain:

(@ tIT(AM@" (), at) AY @' (1), at))) |20, to)
<a|e—|(t tl)H "(S)(aT a)el(t tl)H —|(t tg)H A(S)(aT a)el(t tz)H —|(t to)H|a0>
<a|e—l(t tl)H "(S)(a‘r a)e—l(tl tg)H A(S)(aT a)e—l(tg to)Hla())

= /da*1daldb*ldblda*zdazdb*zdaz (ale1t-tH |5 e a1

« (1| A® @', 2)|by)e P10 (b [e -t F | g ) g2 2%
« (o] A® @', 2)|bp)e D202 (hy|e 0 H | 5)
Here A® (@, @) denotes the operator in the Schrodinger representation. Since A® (@', @) is written in

the normal form, we have R /
(@|A®@" a)la) = A9, a)et d

and using the path integral for the evolution amplitudes in the holomorphic representation (cf (2.3.103)),
we arrive at the required result

(@ tIT(AY @' (ty). at) A" @' (tz). A(t2)))l20. to)
= / Da*(r) Da(r) A@*(t), a(ty)) A@* (t2). a(t2))
x exp{[a*(ha(t) — a*(t)a(to)]}
X exp{ tdr [—a*(p)a(r) — iwka*(t)a(r)] — tdr Vi[a*, a]}.

to to

The case t; > t1 gives essentially the same result. Finaly, we use the fact that |a = 0) = |0), where
|0) is the ground state (‘ vacuum vector’), see (2.3.42), (2.3.44) or (2.3.108) (cf aso (3.1.99)): choosing



40 Quantum field theory: the path-integral approach

a = ap = 0, we convert the considered matrix element into the vacuum expectation value. This proves
the required statement for a system with one degree of freedom. The generalization to an arbitrary
number of degrees of freedom and to an arbitrary number of field operatorsin the time-ordered product is
straightforward and gives the proof of formula(3.1.102).

Problem 3.1.3. Derive arelation between the vacuum expectation

G(x1, x2) = (0T (@(x1)¢(X1))|0)

of the time-ordered product of field operators (the field theoretical Green function) and the amplitude
(@' (1), tT(@(X)@(x)) |@(r), to) (herex; = (rj, tj)) in the coordinate representation.

Hint. Again, we present, as a hint, the main points of the derivation for a quantum-mechanical system
with one degree of freedom. We have

(o, TR )R (t2)) %0, to) =Y (x, Iy (N|TRM (t1)%x ™ (t2)) Im) {mixo, to)

m,n

where |n) are the eigenvectors of the Hamiltonian under consideration: H|n) = Enln), XM (t) is
the position operator in the Heisenberg representation and |x,t) = exp{itﬁ}|x). To understand the
last relation, note that without the time-ordered product, the matrix element under consideration would
coincide with the usual transition amplitude

—i(t—tg)H

(X, t|Xo0, to) = (x|e [X0).

Since we assume that Eg is the lowest eigenvalue of H, the following limit gives the required relation:

Jim - (x, TR t)R M (12)1%0, to) = (x|0)e™Folt(0xg)e™Foltol (o) T (M (1) (12))0)
—100
to——loco

which can be rewritten in a more compact form:

2 ¢

to——ioco

Asin the solution of the preceding problem, we can show that

X(t1)X(t2)€'S.

D
o T EP R (12)) %0, to) = / px(ry 2RO
C{x,t;Xo,to} 2r

Of course, the transition amplitude in the denominator is also represented in terms of path integrals and
this gives the path-integral expression for the vacuum expectation value.

Formula (3.1.99) and the solution of the preceding problem show that path integrals in the
holomorphic representation are much more convenient for this aim.

Problem 3.1.4. Calculate path integral (3.1.127) (see aso (3.1.100) and (3.1.129)) using the trandlational
invariance ¢ — ¢ + ¢¢ of the functional measure and carrying out a square completion in the exponent
of the integrand.
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Hint. We want to calculate the integral
ZolJ] = f Dy(x) exp{i / d*x [3(0.9)” + 3M?p” + J(X)rp(X)]}
= /Dso(x) exp {i / d*x [30(X) (=97 + m? —ie)p + J(x)ga(x)]}.
Here we have introduced, in the exponent, the regularization term —e [ d*x ¢?/2 which provides the
convergence of theintegral. Let ¢ be the solution of the classical equation of motion:
(=02 + m? —ie)ge(x) = —J(X)
that is,
Pe(X) = — / d*y De(x — y)J(y)
where D¢(X) isthe causal Green function (3.1.93). Let us change the integration variables:
Pp(X) = ¢'(X) = 9(X) — pc(X).
Then, we obtain
Zo= mlexp{ —i / d*xd*y[33()De(x — y)J(y)]}

i.e. the required expression up to the factor 9~ which does not depend on the external source
nl= /D<p’ exp {i / d*x /(-2 + m? — ie)(p/}.

By the simple method of square completion, this factor cannot be cal culated directly. Our more rigorous
consideration in sections 3.1.2 and 3.1.3 shows that it must be put equal to unity. Note that the connected
Green functions introduced in section 3.1.5 are insensitive to such a factor, so that for them this method
iswell suited. It is also worth mentioning that, while in this problem we have introduced the e-term by
hand (to improve convergence of the path integral), in section 3.1.2 we obtained the e-prescription for the
Green functions (see (3.1.93)) from the correctly chosen boundary conditions.

Problem 3.1.5. Using the path-integral representation for the generating functional Z[J] prove that
8Z[J]/8J(x), for a field theory with the Lagrangian density L(¢) = Lo(p) + Lint(e), where Lo is
the free particle part and Ljy is the self-interaction Lagrangian, satisfies the equation

1 , 82131 ., (1 & B
(@ +m?) 5300 Ly <TT(X)> Z[3]= I 2[J]. (3.1.167)
Here
MNi8I00) T B0 sy

This differential equation is obviously the quantum counterpart of the classical equation for a field ¢
with the Lagrangian £L(¢). By direct substitution, show that a solution of equation (3.1.167) in free-field
theory has the form (3.1.100) for the generating functional and that the general solution of (3.1.167) can
bewritten asin (3.1.128), i.e.

Z[IX)] = exp{ —i/d“xv <1

i 8J(X)

) }ZO[J(X)]. (3.1.168)
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Hint. From the definition of Z[J], we have

132[J]
i 8J(X)

/ Dy g(x)d eI, (3.1.169)

Now we use the simple identity

1.5 sipar_ 999 31 jsipa
i 3p(X) Sp(X) |
= (—@+ M) + Lin(p(x)) + I(x))eS¥7] (3.1.170)

so that acting by the Klein-Gordon operator (O 4+ m?) on both sides of (3.1.169), we obtain

o

1 3 i
The first term in the integrand on the right-hand side is a total derivative and can only produce boundary
termswhich vanish (for arigorous proof of thisfact for the Feynman path integral we need, asusual, some
regularization, e.g., atransition to imaginary time and, hence, to the Wiener path integral). Therest of the
equality isequivalent to (3.1.167).
For the free-field theory, equation (3.1.167) can be rewritten as follows:

8Z0o[J]
§3(X)

=i@+m) 1Ix)Z0[J]

= —i / d*y De(x — y)J(y) Zo[J]
with the obvious solution (3.1.100).

The fact that (3.1.168) is the solution of (3.1.167) is proved by direct substitution. To compare
the left- and right-hand sides of equation (3.1.167) after the substitution (3.1.168), we should move the

operator
exp{—i/d4xv<.—1 5 )}
1 8J(X)

in front of J(x). Thisis achieved with the help of the operator identity

e BAeB = A+ A

-~

Bl + i[[A Bl Bl +--- (3.1.171)

4 1.9 _ i (Y8
Ud yv <T5J<y))’J(X)}_ "C'”t(iwx))‘

Problem 3.1.6. Derive the graphical representation (a complete collection of Feynman diagrams together
with the symmetry factors, i.e. the numerical factors with which a given diagram enters the expression
for the Green function) for the two- and four-point Green functionsin the first-order approximation of the
perturbation theory for the scalar field theory with ¢* self-interaction.

and the commutator

Hint. The expressions are obtained by using the genuine formula (3.1.128) or by the differentiation of
(3.1.131). Theresultis:

1
Gox—y) = )o(—;/ + Eg ’&.

X y
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Ga(X1. X2, X3, Xa) = (:*I I+><>
+29<.Q' sugge Y| b+&<+>§>
+ 9

Thus, G4 contains in addition to the free four-point function all possible propagators with a self-energy
insertion and asingle ‘true’ interaction graph.

Problem 3.1.7. Provethe following relations between the ordinary G, and connected W, Green functions
in scalar field theory:

Go(x—y) =Wo(Xx—Yy) (3.2.172)
Ga(X1, X2, X3, X4) = Wi (X1, X2, X3, X4) + Wa(X1 — X2)Wa (X3 — X4)
+ Wa(x1 — X3)Wa (X2 — Xa) + Wa(Xg — Xa)Wa(Xz2 — x3)  (3.1.173)

provided that
$Z[J]
3J(X) |3= 0
The latter condition physically means that the vacuum expectation of the quantum field vanishes. If the
guantum field can be expressed via creation and annihilation operators with the condition (3.1.20), the

validity of condition (3.1.174) is obvious. Note, however, that in an important class of models with so-
called spontaneous symmetry-breaking this condition is not fulfilled (see section 3.2.8).

1= (3.1.174)

Hint. Recalling that connected functions are generated by the logarithm of the generating functional for
ordinary Green functions, we have
82In Z[J]
83 (x)8I(Y) |3-0

1 S8Z[J]182[J] 1 82Z2[J]
- (_Z[J]2 8J(x) 8J3(y) * Z[J]aJ(x)aJ(y))
= Ga(X —Y). (3.1.175)

Wo(x — y) =

Here we have used (3.1.174) and the normalization Z[0] = 1. Derivation of (3.1.173) is quite analogous.
Problem 3.1.8. Find the relation between connected and OPI three- and four-point Green functions.

Hint. Differentiation of the equality (3.1.157) with the help of therelation

b _ / géy S0 8 (3.1.176)
8§J(X) 8J(X) 8 (y)
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yields
3 2
0 / di 53W 521
83(xa)83 ()83 (X) 86 ()56 (x2)
2 3 /
B T s b
8I(x)83 (X)) 56 (X)) (X)86 (X5) 8 (Xa)

Again using (3.1.157), we obtain

§3W §2W §2W
= /d“x’1 d*x5 d*x4 - -
8§J(X1)8J (X2)8 J (X3) 8I(x1)8I (X)) 83(X2)8J (X5)
§2W 83r

X .
8J(X3)8J(X3) 8¢ (X7)86(X5)8¢(X3)
Graphically thisrelation is depicted as follows:

| 7
—@— = —o—@—o—

(3.1.177)

Here the lines with the circles denote the two-point Green function (recall that connected and ordinary

two-point Green functions coincide, see (3.1.172)).

One more differentiation of (3.1.177) over J(x) givesthe relation for connected and OPI four-point
Green functions. The calculation is rather cumbersome but straightforward. As a hint, we present this

relation only in the graphical form:

ﬂii@im%

+

Problem 3.1.9. Consider the anharmonic oscillator with the action

mx2  mw?x?

Of course, the corresponding non-Gaussian quantum-mechanical path integral cannot be written exactly.
Using the relation between vacuum expectation val ues and the transition amplitudes aswell asthe explicit
expression for the transition amplitudes of a harmonic oscillator in the presence of a time-dependent
external force (driven oscillator), see (2.2.200), develop the perturbation theory expansion and Feynman
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diagram technique for this quantum-mechanical system. Calculate in the two-loop order the shift in the
ground-state energy of the harmonic oscillator due to the presence of ax3- and x*-termsand corrections
to the two-point Green function Go(t1, t2) = (O|x(t1)x(t2)|0) of the harmonic oscillator (|0) is the ground
state of the harmonic oscillator).

Do the same calculation also for the Euclidean version (i.e. after the analytic continuation to an
imaginary (Euclidean) time g = it.

Hint. Calculations in the real-time formalism and with the Euclidean imaginary time are essentialy the
same. Since later (in section 3.3.3) we shall consider tunneling phenomenafor the anharmonic oscillator
in the Euclidean-time formalism (the Euclidean time is much more convenient for the study of tunneling
phenomena), we give the hint for the imaginary-time version of the calculation.

The Euclidean action reads (we put, for brevity, m = 1):

2
S = /dr [X +— +ax3 + Bx ] (3.1.178)

Expanding the path integral in powers of « and 8, we can derive the Feynman rules for an anharmonic
oscillator. Using the explicit form (1.2.262) of the generating functional for the harmonic oscillator with
an external force (in the Euclidean time), and calculating

lim Z[n; Xz, T|Xo, T
o Too 31 (2) 67(0) [7; (X¢, T|Xo0, T0)]

(cf (3.1.166)), we obtain the free propagator (vacuum expectation for the time-ordered product of two
coordinate operators in the Heisenberg representation):

1
Go(t1, 2) = (OXM (z)x M (12)10) = oo &P(—oln - ). (3.1.179)

In addition to this, there are three- and four-point vertices with coupling constants « and 8. To calculate
an n-point Green function we have to sum over all diagrams with n external legs and integrate over the
time variables corresponding to internal vertices.

The vacuum energy is given by the sum of all closed diagrams. At one-loop order, thereis only one
diagram, the free-particle loop diagram. At two-loop order, there are two O («?) and one O(B) diagram:

Calculating the diagramsis not difficult. Since the propagator is exponentially suppressed for large times,
everything is finite (in contrast to the field theory case, see sections 3.1.4 and 3.2.7). Summing all the
diagrams, we get

2 T 38 1102
(0] exp(—H1)[0) = \/;exp (—7) {1 - (@ - W) T4 ] . (3.1.181)

For small o2 and g and T not too large, we can exponentiate the result and read off the correction to the
ground-state energy:
o 38 1142

= 2 + W - W (3.1.182)
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Of course, we could obtain the result using the ordinary Rayleigh—Schrddinger perturbation theory, but
the method discussed here proves to be much more powerful when we come to non-perturbative effects
(see section 3.3) and to the field theory.

Evaluating the first perturbative correction to the Green function corresponds to the diagrams:

OO0 00 Y. am

Calculation gives

) 15¢2 38
_ —67 wT - efw‘( _
4b + 208 + 44 ’ 203

Comparing this result with the decomposition in terms of stationary states:

AGp(0, 1) = Te T, (3.1.184)

o0
G(O.1) =) e En-Foryoxtin) 2 (3.1.185)
n=0

we can identify the first (time-independent) term with the sguare of the ground-state expectation value
(01x™10) (which is non-zero due to the tadpole diagram). The second term comes from the excitation
of two quanta, and the last two (with extra factors of t) are the lowest-order ‘ mass renormalizations’, or
corrections to the zeroth-order gap between the ground and first excited states, E; — Ep = .

Problem 3.1.10. If we agreed to work only in the framework of the perturbation theory, we could use a
formula of the type (3.1.111) or (3.1.128) as the starting definition of the corresponding path integral.
More precisely, we could define (Faddeev and Slavnov 1980)

/Dw(x)w(xl)'o«o(xn) e><p{'§/d“x dty (K (X — Y)p(y) + i/d“xw(x)J(x)}

8

def _in .
= 500

8 _i_ 4., 44 1.,
5300 exp{ 2/d xd*y J(X) K™ (x y)J(y)}. (3.1.186)
Here K (x — y) and K ~1(x — y) areintegral kernels of mutually inverse operators:
/dx’ Kx—xX)KIx' —y) = /dx’ KIx = x)KX —y) =8(X —Y). (3.1.187)

Note that it is assumed that on the set of fields ¢ (x) which are integrated over in (3.1.186) K ~1(x — y) is
uniquely defined. Recall that in (3.1.111) and (3.1.128) we have distinguished the causal Green function
Dc(x) astheinverse of the Klein-Gordon operator (01 + m?) by imposing suitable asymptotic conditions
for fields ¢.

Show that the perturbative definition (3.1.186) of the path integral fulfils the main properties of any
integral. In particular, prove that definition (3.1.186) is compatible with the rule of integration by parts:

) i .
/ Dyp(x) [ 5900) exp{'i / d4xd4ycp(x)K(x—y)cp(y)” exp{l / d“xw(x)J(x)}

=/D¢(x) exp{'E/d“xd“ygo(x)K(x—y)go(y)} exp{ifd“xw(x)J(x)}.
(3.1.1898)

S (X')
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Three subsequent problems concern other properties of the path integrals defined by (3.1.186).

Hint. The left-hand side of (3.1.188) can be easily calculated:

) i .
/ Dp(X) [W exp{i2 f d*x d*y p(x)K (x — y)w(y)” exp{l / d“xw(x)J(x)}

=i / Dy(X) [ / d*x” K(x' — X”)(p(x”)j|

<o / dix dy (K (X — Y)o(y) + / d*x p(x) 3 (X)

=i / d*x” K (x' — x") / De(x) p(x")

x exp '—2 / d*x d?y o (0K (X — Y)e(y) + i / d*x p(x) I (x)
= —iJ(X) exp {_IE / d*x d*y JOK ~L(x — y)J(y)} ) (3.1.189)

The last equality follows from definition (3.1.186). The right-hand side of (3.1.188) gives, clearly, the
same result and this proves the required equality.

Problem 3.1.11. Show that a path integral over several fields in perturbation theory can be defined by
formula (3.1.186) as an iterated integral; in other words, starting from (3.1.186), prove that

. n n
/D(Pl(x)"'pfpn(x) exp{'—2 > / d4Xd4y<Pi(X)Kij(X—y)‘/’j(y)+i2/ d4X(Pi(X)-Ji(X)}
ij=1 i=1

i o _
= eXD{ -3 szjlf d*xd*y J 00K X = y)J; (y)}. (3.1.190)

Hint. Assumethat (3.1.190) is correct for someinteger n and directly show (using (3.1.186)) that it isthen
correct for n 4+ 1. Thisinduction provesthe statement.

Problem 3.1.12. Provethat definition (3.1.186) impliesthe relation

[ Poooriel] [ oo der (%2 ) e i [ atxacactwon - aon | = Fia @10
where F[¢] isan arbitrary functional, g is some new field variable and ¢ is a solution of the equation
f(@(x) —g(x) =0. (3.1.192)
This meansthat the integral on the |eft-hand side of (3.1.191) contains the §-functional
ka(x) exp {i / d*x 200 (f (%)) — g(X))} = 5(f(p(x)) —g(x)). (3.1.193)
Hint. The function f (¢ (X)) can be presented in the form

f(p(X)) = co(x) + o(x) + Flp(x)) (3.1.194)
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where
flpx) = / dty ci(x, y)e(y) + / dtyd*y ca(x, v, Y)e(V)ey) + - - -.

For simplicity, we put the coefficient at ¢(x) in (3.1.194) equal to unity; the consideration is trivially
generalized for an arbitrary value of the coefficient.
The determinant in the path integral can now be understood as the power expansion

det(M> = det <1+ ﬂ) = exp{TrIn(1+ ﬁ)}
3¢ 7 7

:@(p{/d4xaf(x) }/d4xd4 8f(x)8f(y)+“
Sp(y)

2 So(y) 8p(X)

Here we have used the well-known formulafor the determinant of a matrix K:

: } (3.1.195)
x=y

detK = eTrInK.

Using definition (3.1.186) and integration by parts (cf problem 3.1.10, page 46) the left-hand side of
(3.1.191) with the basic functional

Flpl = exp{izfd“x dy () K (x — y)go(y)}

can be cast into the form

/m(x) exp{—lz/d“x d*y A () K L(x — y)x(y)} Blg, A (3.1.196)
where
def sf/1s — (. ~( 138
Blg, 1] = det [14— % <|_ﬁ)} exp {|/dx f <_i_§) A(x)}
X exp{—i / dx[g(x) — co(x)]A(x)} . (3.1.197)

Here the symbol e(fp means that in the expansion of the exponential we should place all the operators
8/8x totheleft of A(x). It isreadily seen that thisfunctional satisfies the equation

8

: ~(1
5300 =i [co(x) —gx)+ f (Tﬁ)] B (3.1.198)

with theinitial condition B[g, O]. It is natural to seek the solution of (3.1.198) in the form

Blg, A] = B[g, 0] exp{—i/d“x A(X)go(g)}. (3.1.199)
Substitution of (3.1.199) into (3.1.198) gives the condition

9(x) = g(x) — co — (). (3.1.200)
Thus, integral (3.1.196) takes the form

B[g. O] exp {'5 / d4x dy FOOK (x — y)&(y)}
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so that the required statement is proved if B[g, 0] = 1. To show the latter equality, we rewrite functional
(3.1.197) asfollows:

-~ s ~
B[g, A] = —i [ d* f(g—
[9. 2] eXp{ I/ Xag(x) (9 Co)}

st [ 4
x det <1+ %(9—00)) eXD{—I/ d xx(X)[Q(X)—Co(X)]}

and therefore
Bl 0]—det[e§ {—i/d“x 5 f( —co)}<1+£( —co))}-l
o= P sg(x) O 59
- S LI
= det[Xn: ol 8g”(x)f (9—00)(1+ 59 9 00)>]1. (3.1.201)

The last step of the proof is a verification that the second term of the nth binomial in the sum (3.1.201)
cancelsthe first term of the (n + 1)th binomial.

Problem 3.1.13. With the help of the perturbative definition of path integral (3.1.186) prove the formula
for changing the integration variables:

p=1@) ¢ =0 +¢ X+ @)

(f~is defined asin (3.1.194); ¢’ hereisanew field variable, not a derivative of thefield ¢). Namely, show
the validity of therelation

/Dfp(x) exp{'E/d“xd“yso(x)K(x—y)w(y)+i/d4xw(x)J(x)}

=/D<p’(X) det (1+ ﬁ)
74
X exp{lg/d“xd“y fe(x)K(x — y)f(w(y))+i/d4x f(go(x))J(x)}. (3.1.202)

Hint. A possible way to prove the required equality isto integrate both parts of (3.1.202) over J(x) with

the functional
exp{-i/d“x J(x)a(x)}

where o (X) is a new field from the same class of functions (this is the functional analog of the Fourier
transform). Using the result of the preceding problem 3.1.12, it is easy to show that the results of such an
integration of the left- and right-hand sides of (3.1.202) indeed coincide.

3.2 Path-integral quantization of gauge-field theories

So far, we have dealt only with spacetime (in particular, relativistic) transformations of physical systems.
However, transformations which leave the spacetime coordinates unchanged but changing only the
wavefunctions, ¥ (x) — W’(x), and/or fields, ¢(x) — ¢’(x) exist. Such transformations, called internal
transformations, are related to the internal properties of fields and elementary particles and are described
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by internal symmetry groups. If the groupis given, theinfinitesimal transformations of a collection of (for
simplicity, scalar) fields ¢; forming a representation of the group read as

@i (X) = ¢ (X) = ¢ + 8¢i (X) (3.2.1)
8¢i (X) = Teagj. (3.2.2)
Here Ti‘]?‘ (@a=1...,N,i,j=1,...,r)areN generators (more precisely, matrices of the representation

of the generators), ¢4 are the infinitesimal parameters of the group, N isthe group dimension andr isthe
dimension of the representation (for basic notions on group theory, see supplement 1V).

The condition § S = 0 of invariance of the action S of some field theoretical model under a group of
internal transformations defined by generators Ti‘]-" has the form (seg, e.g., Itzykson and Zuber (1980) and
Chaichian and Nelipa (1984))

E-ri?‘/’j T

d¢i 9(9uei)
where £ is the Lagrangian density of the system. These identities express the necessary and sufficient
conditions for the Lagrangian and action to be invariant under the transformations of an arbitrary global
group & of internal symmetry.

A globally invariant Lagrangian can be non-invariant under a certain generalization of the notion of
Liegroups, called group of local transformations or gauge group. To obtain alocally invariant Lagrangian,
new fields have to be introduced. These are called gauge fields. In modern elementary particle theory,
in high-energy (small-distance) physics, as well as in condensed matter physics, gauge invariance is the
basic guiding principle for theoretical model building.

After avery short introduction to the structure of gauge-invariant Lagrangians and the geometry of
gauge fields, we shall describe their quantization via path integrals which proves to be very convenient
for this purpose since the standard operator canonical quantization meets serious combinatorial technical
difficulties and is, in general, very cumbersome (in particular, it is rather difficult to control relativistic
invariance at each step of the quantization in this case). Without exaggeration, we can say that the
‘second birth’ of path integralsin quantum mechanics and their recognition as a very powerful method
for quantization of systems with complicated symmetries started in the 1970s with the construction of
realistic gauge models.

As we shall discuss, gauge invariance leads to constraints in the theory. As a preliminary step, we
shall describe the path-integral quantization of quantum-mechanical systems with constraintsin the case
of afinite number of degrees of freedom. Then we generalize this consideration to quantum gauge-field
theory, i.e. to aquantized field theory invariant with respect to a gauge (local) group.

3.2.1 Gauge-invariant Lagrangians

In the case of a group of globa transformations the parameters ¢, in (3.2.2) are independent of the
coordinates. Suppose now that the parameters of the group are coordinate dependent. The functions
of the field then transform according to

8¢i (x) = Tifea()gj (X). (3.2.4)

The group of such transformations is called the local or gauge group. Even if a Lagrangian satisfies
the condition of global invariance (3.2.3), it is not invariant under the local transformations (3.2.4), the
variation being proportional to the derivatives of the parameters:

oL

=——" T30 0. 3.25
8@ 1Y) ka7 (325
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<& Gaugefields and gauge-field tensors

To achieve the invariance of the Lagrangian under the transformations (3.2.4), new vector fields Aﬁ must
be introduced in addition to the initial fields ¢;, to compensate the right-hand side of (3.2.5). Thisresults
in anew Lagrangian, invariant under the transformations (3.2.4). Thefields AZ thusintroduced are called
gaugefields.

To construct a locally invariant Lagrangian from a globally invariant Lagrangian Lm(gi, 3,.¢i) we
should substitutein thelatter all the partial derivativesd,,¢; with the so-called covariant derivatives D, ¢ :

Lin(@i, 3u¢i) —> Lm(ei, Dugi) (3.2.6)

where
def

Duoi = 0, —Ti?AZ(pj. (3.2.7)

We have added here the subscript ‘m’ to stress that thisis a matter-field Lagrangian. Now if we postulate
that under the local infinitesimal gauge transformationsthe gauge fields Ai acquire the addition

§AR = & ADec(X) + duea(X) (3.2.8)

(fs, are the structure constants of the global Lie group under consideration; we shall assume in this
section that it is a semisimple Lie group; cf supplement 1V), the Lagrangian on the right-hand side of
(3.2.6) provesto be gauge invariant. The point isthat (3.2.8) providesthat

8(Dpgi) = Tea(X)Dpugj. (3.2.9)

The latter equality justifies the name covariant derivative (D, ¢; transformsunder the gauge group in the
same way as ¢j, i.e. D, ¢j is a covariant quantity). Now the matter Lagrangian Lm(¢i, D,.¢i) is not a
free one since the covariant derivative introduces an interaction with the gauge fields Aﬁ. If we want to
consider the latter as dynamical fields, we should add the kinematical part for them.

The gauge-invariant Lagrangian for the gauge fields is made of a specific combination F2 , called

the gauge-field tensor: v

def
F2, = 8,A2—3,A2 — ZfR(ADAC — ADAC). (3.2.10)

Thistensor is obviously antisymmetricin theindices .« and v. In contrast to thefield A2, the combination
Fj‘v is transformed homogeneously under the gauge group:

SF2, = fSec(0FY,. (3.2.11)

There are many possibilities to construct a gauge-invariant quantity from F;j‘u. The additional condition
of renormalizability of the complete gauge-field theory (see later) distinguishes the only appropriate
Lagrangian. Thisis a Lagrangian quadratic in F;'j‘v, which was proposed in the pioneering work by Yang
and Mills (1954):
1
Lym = 4 F2, Fam, (3212)
Recall that we adopt here and in what follows the standard convention for summation over group and

relativistic indices:
N 3
> D FLgveTF.
a=1p,v,p,0=0

Note that it is customary to name the gauge fields and the corresponding field theory Yang—Mills fields
and Yang—-Mills theory, respectively. From (3.2.10) and (3.2.12) it is seen that for non-zero structure

g

a rawv
FMU F
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constants f. (non-Abelian group) the Lagrangian Ly contains the interaction (non-quadratic) terms for
the gauge fields Aﬁ. Hence, even a pure Yang—Mills Lagrangian (without matter fields) for non-Abelian
Lie groups corresponds to a non-trivial (non-free) field system. The constant g is the coupling constant
for the gauge fields (it may occupy a more familiar place as a factor in higher-than-quadratic terms after
thefield rescaling: AS — gA%).

The full Lagrangian £ of the system of the matter fields ¢; and gaugefields AZ is given by the sum
of the Lagrangian Lym (A%) and Lm(¢i, D,.¢i) (the latter contains the Lagrangian of the matter fields as
well as the interaction Lagrangian between the matter and gauge fields):

L(AS, i) = Lym(AL) + Lm(@i. Dugi). (3.2.13)

<& Simplest examples of Yang-Millstheories
Example 3.3 (Yang—Mills theory with Abelian group U (1): quantum electrodynamics). Let us start from
the free Lagrangian for a single spinor field v (x) with mass m:

i - - _
Lom(y) = 5(107/“8#10 — ¥y y) — myryp. (3.2.14)
ThisLagrangianisinvariant under the global one-parameter Abelian group U (1) of phase transformations
vy =%y g =d%y (3.2.15)

where ¢ isthe (constant) parameter of the group and g is the coupling constant (aswill be seen later). The
infinitesimal version of (3.2.15) reads

Sy = —iegy SY =iegy. (3.2.16)
By comparing (3.2.16) with (3.2.4), we find that the matrix of the transformation generatorsis diagonal:
T11 = —ig Too =g Tio=To1 =0. (3.2.17)

Here the indices 1 and 2 refer to y and v, respectively. Of course, the structure constants of this group
vanish (asfor any one-parameter group).

Consider the corresponding local gauge group with the coordinate-dependent parameter (x). As
we have discussed previoudly, the gauge-invariant Lagrangian for the matter fields is constructed via
substitution of ordinary derivative by the covariant derivative:

Ay — D =0, ¥ +igALY
oy — Duyr = 0¥ —igALY.
The Lagrangian part, Le, for the gauge field A, is expressed, according to (3.2.10) and (3.2.12), as

follows:
Le=—3Fu,F" (3.2.18)

where
Fp,v = 8u A, — 9y Au~ (3219)

Of course, the Lagrangian for the pure Yang—Millsfield in the case of an Abelian group does not contain
interaction terms. Aninfinitesimal transformation of thefield A,, is defined by (3.2.8):

SA, = B,e(X). (3.2.20)
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Thus, the compl ete gauge-invariant L agrangian takes the form
LA, ¥) = Le(Aw) + Lm(¥, ¥, Dy, Duih)
=~ ZFuF 4 Sy — ) — i - gl A, (3221)

and coincides with the Lagrangian of quantum electrodynamics (QED) if we put g = e, where e is the
electrical charge of an electron.

Example 3.4 (Yang—Millstheory for the non-Abelian SU (2) group). Let us consider the fundamental
SU (2) representation

Y1
i = 3.2.22
v ( 1//2) (3222
where 1 and v, isadoublet of spinor fields. The free Lagrangian for them is given by
i - - _
Lom(W) = 5Wiy"duvh — duvhiy™yi) — M. (3.2.23)
Thisisinvariant under the global non-Abelian group of SU (2) transformations
i
Vi — Y = [exp {—Egeaaa}l Y (3.2.29)
ij
- - - i
Vi — Y =Y [exp{igeaaaH - (3.2.25)
ji

where ey, a = 1, 2, 3, denote the (constant) parameters of the group and o5 denote the Pauli matrices
0 1 0 —i 1 0
crl=<1 0) 02=<i 0) crg:(o _1>. (3.2.26)

i
T2 = —Eg(aa)i J- (3.2.27)

The matrices

are the generators of the group in the doublet (fundamental) representation and satisfy the commutation
relations:
[T2, TP] = geancTe (3.2.28)

with the group structure constants having the form f& = geanc. Here eanc is the totally antisymmetric
tensor with €103 = 1.

Let usturn to the group of local gauge transformations. The Lagrangian (3.2.23) becomes invariant,
provided that the substitution

i
i —> Dpi = auvhi + Eg(()’a)ij Ui A (3.2.29)
has been made, according to (3.2.6). As can be seen, in this case we have atriplet of vector gauge fields

AZ,
8 The Lagrangian for the gauge fields has, according to (3.2.12) and (3.2.10), the form

1 v
Lym = — a2 Fo Fas (3.2.30)
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where »
F2, = 9,A% — 3,A2 — Teanc(ADAC — ADAD) (3.2.31)
is the tensor of the Yang—Millsfields. Equation (3.2.31) contains, besides the quadratic terms, cubic and
quartic termsin thefields A%, i.e. the self-interaction of the Yang-Millsfields.

For the complete locally invariant Lagrangian we obtain

1 i - - - 1-
=~ agFaF SO B = By Y — i — S Ga)ij v AL
(3.2.32)

The constant g plays the role of a coupling constant for the gauge field interacting with the spinor field
and with itself. Thisis clearly seen after the field rescaling A — gAf, which casts the Lagrangian into
the form:

1 i - - _ _
LAS, ) = —ZF,‘E‘UF""““ + IE(I/fiJ/“a;u/fi — iyt ) — My — gllfiy“(cra)ij YA (3233

with 9
F2, = 0, A2 — 9,A2 — Eeabc(AﬁA?J — APAS).

R o R

<& The Gausslaw in electrodynamicsas an example of constraintsin Yang—Millstheories

The Lagrangian (3.2.18) for the purely electromagnetic field can be rewritten equivalently as follows
Lo = —3[ExdoAx — (EZ + BD) + Ao(3EK)] (3.2.34)

where Ex = Fyo is the electric field and By = %Eiijij is the magnetic field (herei, j,k = 1,2, 3 are
the space part of the spacetime indices ., v of the tensor F,,). It is seen that the time component of the
electromagnetic field Ag plays the role of a Lagrange multiplier. Variation of the corresponding action
with respect to the latter givesthe constraint

kExk=0 (3.2.35)

which expresses the Gauss law for a pure electromagnetic field (i.e. in the absence of any charged
particles). This is a constraint equation but not an equation of motion because it does not contain any
time derivatives and hence does not define a time evolution.

The existence of constraintsis a general feature of any Yang—Mills gauge theory. We shall discuss
this fact in somewhat more detail a bit later, but before, we shall consider systems with constraints and
their path-integral quantization in the case of afinite number of degrees of freedom.

3.2.2 Constrained Hamiltonian systems and their path-integral quantization

Constraints are well known from classical mechanics where they are usually realized by surfaces which
restrict the motion of some particles. In the simple case of holonomic constraints, i.e. constraints of the
type

$a(ai) = 0. (3.2.36)
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they can easily be used to reduce the number of coordinatesto the number of physical degrees of freedom.
Then the remaining coordinates are independent of each other and in the subsequent Lagrangian or
Hamiltonian formulation, we no longer have to consider the constraints. In field theory, the concept
of constraints proves to be more complicated. Non-physical degrees of freedom are introduced and kept
in order to obtain a manifestly L orentz and gauge-invariant formulation of atheory. The presence of these
non-physical degrees of freedom leads to constraints. In most cases, these are not holonomic constraints
of the type (3.2.36), but they have the more general form

#a(Gi, pi) = 0. (3.2.37)

Even in this case it is possible to eliminate the constraints by reducing the number of variables to the
number of physical degrees of freedom. However, in general, such a procedure is not desired because
it leads to the loss of a manifestly Lorentz or gauge-invariant formulation of the theory. Instead, we
consider the constraints within generalized Hamiltonian dynamics which was studied for the first time by
Dirac (1950, 1958) (see also Dirac (1964), Faddeev and Slavnov (1980), Gitman and Tyutin (1990) and
referencestherein).

<& Constrained systemswith afinite number of degreesof freedom

Consider a physical system given by the Lagrangian L which is a function of the coordinates g
(i =1,...,d)andtheir first time derivatives. This Lagrangianis said to be singular if

2
af 25 Yo (3.2.39)
94 94

In this case, not all of the equationsthat define the momenta

oL

pi = o (3.2.39)
can be solved for the velocities ¢ . Instead, some of these relations yield the primary constraints
oD (@i, pi) = 0. (3.2.40)
Now we can construct the Hamiltonian
H=¢gp —L (3.2.41)

where the ¢ have to be expressed in terms of the g and p; by applying (3.2.39). Although (3.2.39)
cannot be solved for all ¢, we can show (see, e.g., Gitman and Tyutin (1990)) that, due to the presence of
congtraints (3.2.40), al the ¢ can be eliminated from H, i.e. H only dependson g; and p;.

As in the unconstrained case, the Hamiltonian equations of motion follow from the least action
principle

5/[qi pi— H]dt=0 (3.242)

however, the variations §q; and ép; are not independent of each other but they are restricted by the
constraints (3.2.40). This case can be treated by the method of Lagrange multipliers, which yields the
equations of motions for any observable, i.e. for afunction f (g, pi) of gi and p;, of theform

f={HD, f} (3.2.43)

1
95"=0
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with
HO =H 4+ )\a¢él) (3.2.44)

where the 1.5 are the (a priori undetermined) Lagrange multipliers.
The primary constraints have to be consistent with the equations of motions, i.e. the time derivative
of (3.2.40) also has to vanish:

(bél) ={H (1)’ ¢:£11)}|¢é1)=0 = {H, ¢(£11)}|¢é1):0 + )\b{¢é1)’ él)}l(pél):o =0. (3.2.45)
If these relations are not fulfilled automatically, they can be written in the form
o2 (i, pi) = 0. (3.2.46)

In this case, constraints (3.2.46) also have to be satisfied in order to ensure consistency with the equations
of motions and these are called secondary constraints.

Thisprocedurehasto beiterated, i.e. the demand that the time derivativesof the secondary constraints
have to vanish may imply further constraints until finally a set of constraints which is consistent with the
equations of motionsis obtained. Although the various constraints are obtained at different stages of the
procedure, there is no essentia difference between them. In fact, they can be treated on the same level:
we obtain an equivalent physical formulation of a constrained theory if we rewrite (3.2.43) and (3.2.44)
as

f = {Hr, f}lg.=0 (3.2.47)
with the total Hamiltonian
Hr = H + Aa¢a (3.2.48)

where ¢, denotes all the constraints (Gitman and Tyutin 1990).
Another classification of the constraints is related to a determination of the Lagrange multipliersin
(3.2.48). If the matrix
{#a, Pb}|pa=0 (3.2.49)

is non-singular, the constraints are called second class. In this case, relations of the type (3.2.45), i.e.

$a = {HT, Pa}lpa=0 = {H, da}lpa=0 + Abl{db, Pa}lgpa=0 = 0 (3.2.50)

can be solved for the A5:
ha = —{a, oo} {H, ¢b}|ga=0. (3.2.51)

Inserting this into (3.2.47) with (3.2.48), the equations of motion can be written in the simple form
f ={H, f}ps (3.252)
where the Dirac bracket {-, -}pg is defined as (Dirac 1964)

{1, gloe = { f, GHpa=o — { . da}{¢a, b} " {#b, G} Iga=0. (3.253)

Substitution of the Poisson brackets by the Dirac brackets allows usto formul ate the dynamics of asecond-
class constrained system analogously to the dynamics of an unconstrained system.

A different situation arises if the matrix (3.2.49) is singular. Assuming that (3.2.49) has the rank
r, we can order the constraints such that the upper left r x r submatrix of (3.2.49) has a non-vanishing
determinant. Then only the first r constraints are second class and the remaining ones are first-class
constraints. The Lagrange multipliers corresponding to the first-class constraints cannot be determined
from (3.2.50). Thus, the equations of motion (3.2.47) with (3.2.48) contain undetermined Lagrange
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multipliers and therefore their solution (for given initial conditions) is not unique: two solutions f and
f’ of the equations of motion (3.2.47) with (3.2.48), with the same initial condition at t = 0 (but with
distinct choices of the Lagrange multipliers corresponding to the first-class constraints), differ after an
infinitesimal time interval dt by

Af(dt) = dt(ha — A {BF.. f}. (3.2.54)

Here ¢¢, denotes the first-class constraints. A transformation of the canonical variables, which relates
different solutions of the equations of motion, is called a gauge transformation. This is the genuine
and general definition of the gauge transformations, examples of which we encountered in the preceding
section in the case of field theoretical models. Equation (3.2.54) shows that the first-class constraints are
the generators of the (infinitesimal) gauge transformations. All solutions of the equations of motion with
the same initial conditions describe the same physical process; in other words, al points in the phase
space, which are related by gauge transformations, describe the same physical state of the system. Thus,
afirst-class constrained theory has a gauge freedom and is called degenerate.

The choice of aunique solution for the equations of motion for giveninitial conditionsin adegenerate
theory is achieved by imposing a gauge on the original theory, i.e. by introducing additional gauge-fixing
conditions

xa(di, pi) = 0. (3.2.55)

The number of gauge-fixing conditionsis equal to the number of first-class constraints and together with
the latter, the gauge-fixing conditions must form a set of second-class constraints, that is

det |{pa, xb}pl # O. (3.2.56)

Now therelations analogousto (3.2.50), but including both ¢4 and x5, determinethe Lagrange multipliers
corresponding to the first-class constraints and the ambiguity in the solution of the equations of motions
isremoved.

The standard examples of a first- and a second-class constrained system are the massless and the
massive vector fields, respectively. It turns out that a massive vector field is subject to two second-class
constraints. This means that among the four field components in the four-dimensional spacetime and
the four conjugate momenta, there are only six independent degrees of freedom (three fields and three
generalized momenta). In the Hamiltonian treatment of a massless vector field, two first-class constraints
arise and therefore two gauge-fixing conditions have to be introduced. Thus, there are only two physical
field components and two physical momenta. We shall consider this system in the next subsection.

<& Transition to physical variablesfor systemswith fir st-class constraintsand for a specific choice of
gauge conditions

Let us consider in more detail the case of a constrained system with only first-class constraints ¢4 (a =
1,....r). Thiscase is important because many gauge-field models belong to this type. The first-class
constraints satisfy the condition of involution:

{¢a. #b} = D _ Cabd (P, Db (3.2.57)
d

where the coefficients capg may depend, in general, on pj, g;. Thisinvolution condition follows from the
fact that if all the constraintsarefirst class, there are no submatrices of {¢a, ¢p} With non-zero determinant
(on the surface defined by the constraints ¢, = 0(@=1,...,r)). Weassumethatthe¢, (a=1,...,r)
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include all the constraint generations (i.e. primary, secondary, etc). Thus, they satisfy the consistency
condition (cf (3.2.45))

{H s ¢a} = Cab(pv Q)¢b (3258)

with some coefficients cap(p, q). In order to separate out the physical variables, we have to impose r
gauge conditions

xa(p,q) =0 (3.2.59)
satisfying (3.2.56). Let us choose them in such away that their mutual Poisson brackets vanish:
{xa. xo} = 0. (3.2.60)

Then, the physical canonical variables @, p; parametrize the surface (subspace)
xa(p,q) =0 ¢a(p,q) =0 a=1,...,r (3.2.61)
and the compl ete set of canonical (both physical and non-physical) variables can be chosen as follows:
d=(xa. &) P=(paP) a=1....r;i=1....n—r (3.2.62)
where p5 are the momenta canonically conjugated to xa. Condition (3.2.56) now takes the form

det‘%

0 3.2.63
e |7 (3263)

so that the constraints ¢ = 0 allow us to express the variables p; (a = 1,...,r) in terms of other
variables. Thus the physical subspace I'?("—") of the total canonical phase space R?" is defined by the
equations

Ga=xa=0  pa=pa(@ . G) a=1...,r;i=1....n—r (3.2.64)
and the variables fj, G arethe physical canonical variables. The physical Hamiltonian Hpn reads
Hpn(Pi, @) = H(p, @)lp=y=0. (3.2.65)

The initialy constrained system with Hamiltonian H and the reduced system with Hpn are totally
equivalent (problem 3.2.1, page 98). Different choices of gauge conditions lead only to canonical
transformationsin the physical subspace I'2™") and do not affect the physical results.

<> The Hamiltonian path integral for constrained systems

Now we are ready to quantize a constrained system with the help of path integrals. As just explained,
a constrained system is equivalent to an unconstrained one with a reduced phase space consisting of the
variables i and p;. The Hamiltonian path integral for this unconstrained system has the well-known
simple form

/Dai Dpi exp{i/dt (& Bi — th]}. (3.2.66)

However, as we have already mentioned, we do not normally use this choice of unconstrained parameters
because in the primordial constrained parametrization it is easier to find a manifestly Lorentz or gauge-
invariant formulation of the theory. Thus, it is practically important to rewrite path integral (3.2.66) in
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terms of the original variables pa, ga (A =1, ..., n). Itisnot difficult to verify that the integral

/HDDADQAHD)»aH(S(Xa)l_[det|{¢a, xoH
A a T,a T

X exp{i/ dz[pada — H(p,q) — rada(p, Q)]} (3.2.67)
A=1....,nja=1...,r

fits the requirement. Indeed, integrating over the Lagrange multipliers A5, we obtain, from (3.2.67),
K(d, t; qo. to) = / [[PpaDaa [ I a(m)é(%)} [ ] det l{ga, xo}l
A 7,4 T

X eXp{i/dr[pAQA —H(p, q)]}. (3.2.68)

Intermsof the variables P, Gi, pa, da (cf (3.2.64)) the pre-exponential factor in the integrand can be cast
into the form

d
[ T8 @a) [ ] det{ga. xu}l = [ [8(xa)d(ga) | | det ‘a%z
T,a T T,a T
= [[5@a)é(pa — pa(P. ®). (3.2.69)

T,a

Thus, after an integration over pa, ga, the path integral (3.2.67) is reduced to (3.2.66).

This is the general form of the Hamiltonian path integral for a first-class constrained system. This
result can be extended to a system with both first- and second-class constraints. This generalization is
not difficult because after introducing the gauge-fixing conditions, even a first-class constrained system
formally becomes a second-class one. |f the set of constraints {¢5} consists of first-class constraints
¢3 and second-class constraints ¢35 4, we find (Gitman and Tyutin 1990) that the evolution operator or
generating functional for an arbitrary system with constraintsis given by the path integral

K(q,t; go, to) = / l_[ DgaDpa [ ]_[ 5(¢2and)5(¢?st)5(xa)}
A T,Q
1..a b a _b ; .
x []‘[ det? ({$5ng: P2na}) (Pl X })} exp {. / dt [dapa — HT]} (3.2.70)
(Ht isthetotal Hamiltonian, cf (3.2.48)). Thisisthe Hamiltonian path integral for an arbitrary constrained

system. It hasthe following properties:

e itisinvariant under canonical transformations;
e itisinvariant with respect to the choice of an equivalent set of constraints and
e itisindependent of the choice of the gauge-fixing conditions.

We shall not discuss systems with second-class constraints and therefore we drop a detailed derivation
of (3.2.70). The consideration in the subsequent subsections will be based on a field theoretical
generalization of path integral (3.2.68).
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3.23 Yang-Millsfields: constrained systemswith an infinite number of degrees of freedom

Let us now turn to constrained systems with an infinite number of degrees of freedom. The examples
we have in mind are the gauge fields. the Abelian gauge theory corresponding to the electromagnetic
field and the non-Abelian Yang-Millsfields. The transition amplitudes for the quantum versions of these
theories can be obtained as for unconstrained field systems: we start from a constrained system with a
finite number of degrees of freedom considered in the preceding subsection and then generalize the result
to the corresponding field models (with an infinite number of degrees of freedom). But first of al, we
should clarify the structure of constraints in the gauge-field models.

< Electrodynamics as a system with constraints

We have aready mentioned that electrodynamics is an example of a field system with constraints (cf

(3.2.34) and (3.2.35)). Here, we shall consider the Hamiltonian structure of thisimportant theory in more

detail with the further aim of quantizing it and constructing transition amplitudesin terms of path integrals.
Asinitial variableswe can choose the fields A, (x) with the Lagrangian

Lo=—30, A — 3,A,)? (3.2.71)

or the fields A, (x) together with the tensor F,, (x) considered as independent variables and with the
Lagrangian
Lo=—3@, A — A, — 3Fu)FM. (3.2.72)

These alternatives are said to be the second- and first-order formalismsin the case of Lagrangians(3.2.71)
and (3.2.72), respectively. Of course, they both lead to the same physical result: the variation with
respect to F#*¥ in (3.2.72) gives the constraint which is nothing other than expression (3.2.19) for the
electromagnetic tensor and its substitution into (3.2.72) gives Lagrangian (3.2.71). We shall use the first-
order formalism, i.e. Lagrangian (3.2.72).

Let usrewrite (3.2.72) in three-dimensional notation, i.e. separate the four-dimensional indices i, v
into time- (i, v = 0) and spacelike (1, v = k, | = 1, 2, 3) parts. Then, omitting the total divergence,
(3.2.72) can be presented in the form

Le = ExAx — H(Ek, A) + AoC(Ex) (3.2.73)

where
Ax = 9pAx Ex = Fko Bk = %fiijji (3.2.74)
H(E,A) = 1(EZ+B)  C(E) = dEx (3.2.75)

The magnetic field F is supposed to be expressed in terms of Ag:
Fa = 01 Ak — kA (3.2.76)

It is clear that H (Ek, Ax) is the Hamiltonian of the system, while Ex and Ax (k = 1, 2, 3) are pairs
of canonically conjugate momenta and generalized coordinates, respectively, and thus we can postulate
Poisson brackets for them in the form

{Ek(¥), Al(Y)} = Sk d(X — Y). (3.2.77)

As we have aready pointed out, the timelike potential Ag(x) plays the role of a Lagrange multiplier and
its variation in the action corresponding to (3.2.73) produces the constraint (cf (3.2.35))

aEx = 0. (3.2.78)
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orbits

gauge condition
x(AL(x),x) =0
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Figure 3.10. Graphical representation of the orbits generated by a gauge group and of the surface defined by a gauge
condition.

This constraint satisfies the self-consistency conditions (cf (3.2.57) and (3.2.58)):
{oEk(t, ), a Ei(t, )} =0 (3.2.79)
{(/ d3x H (Ex(t, X), Ax(t, X))), ok Ex(t, y)} =0 (3.2.80)

so that there are no additional higher-order (secondary, etc) constraintsin this case.
The next step is to fix the subsidiary gauge condition or simply gauge x = 0 (cf (3.2.55)). For
electrodynamics, the following gauges are most commonly used:

kAx=0 the Coulomb gauge (3.2.81)
A =0 the Lorentz gauge (3.2.82)

(recall that index k in (3.2.81) runs over 1, 2, 3, while the index u in (3.2.82) runsover 0, 1, 2, 3). Both
conditions ((3.2.81) and (3.2.82)) obvioudly satisfy the necessary condition det{C(Ex), x} # 0, where x
stands for a gauge condition (cf (3.2.56)). For example, for the Coulomb gauge, we have

{Ak(t, X), a AL, Y} =0 (3.2.83)
{Ex(t, x), a AL, Y} = 338 (x — y). (3.2.84)

The three-dimensional Laplacian in the right-hand side of (3.2.84) is reversible and has non-zero
determinant.
Thus the gauge conditions lead to an equation which defines the parameter e(x) of the gauge
transformations (cf (3.2.20))
A(X) — AL(X) + 3,8(X). (3.2.85)

A class of fieldsrelated by these transformationsfor all £(x) is called an orbit of the gauge group. Gauge
invariance meansthat thefields A, and A, + 9,,.& describe the same physical state for any «(x). A gauge
condition chooses arepresentative from each class of physically (gauge) equivalent fields. An orbit can be
depicted schematically as aline with points which are all physically equivalent and can be converted into
each other by means of the gauge transformations. The gauge condition can be represented as a surface
which crosses each orbit once (see figure 3.10).

Note that we have presented a simplified version of the analysis of electrodynamicsas a system with
congtraints. This is quite sufficient for our purpose. A more rigorous and complete approach (Gitman
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and Tyutin 1990) considers the Lagrange multiplier Ag on equal footing with Ax and inputs the primary
congtraint

Eg=0 (3.2.86)
as a consequence of the equality
9Le
= 3.2.87
9(3t Ao) ( )

(Eo is considered as a momentum which is canonically conjugate to Ag). Then we should consider the
total Hamiltonian

Hr ' H(Ex. A — AoC(Ex) (3.2.89)

and its Poisson bracket with the primary constraint (3.2.86) gives the secondary constraint

{ /d3X Hc(Exk, Eo, Ak, Ao), Eo} =okEx=0 (3.2.89)

which coincides with (3.2.78). Thus, in this approach we have two constraints and, therefore, have to
input two subsidiary gauge conditions: e.g., in addition to the Coulomb gauge (3.2.81) we can input the
condition dx Ax — 99 Ag = 0 (Gitman and Tyutin 1990). We shall not follow this way of analysing gauge
systems. For the relatively simple gauge models which we shall encounter in this book, this smplified
formalism outlined here is quite enough.

< Constrained Hamiltonian mechanics of non-Abelian Yang-Millsfields

First, we shall introduce some convenient notation which will simplify the formula-writing for
Hamiltonians, constraints, gauge conditions, gauge transformations, etc. It is convenient to consider the
gaugefield for some compact Lie group & asafield A, (x) taking valuesin the corresponding Lie algebra
g. Of course, A, (X) is defined by its coefficients Aﬁ(x):

ALx) = A00T? (3.2.90)

where T8, a = 1,...,dimg, form the basis of the Lie algebra g (the basis of generators of the group
®). We shall assumethat T2 are anti-Hermitian operators. Then, if g(x) is agauge group element in the
adjoint representation (see supplement V), the gauge transformations can be written as follows:

e infinitesimal transformations (3.2.8) corresponding to elements g(x) close to unity,

gx) =1+e(x) =1+&2(0)T? (3.2.91)
take the form
A, = 0.6 —[Ay, el =Dy e (3.292)
where [- - -, - - -] is the Lie algebra commutator (recall also that D,, is the covariant derivative, see
(3.2.9)); and

e transformationswith an arbitrary g(x) read as
AL () — A (X) = gO)AL ()G HX) + (3,9())g (). (32.93)
The gauge-field tensor F,,, in thisnotation is expressed through the gaugefield viathe matrix relation

Fuv = AL — 0.A, +d[AL ALl (3.2.99)
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Thisnotation allows usto avoid writing alot of indicesand to present expressionsfor the Yang—Mills
theory with an arbitrary group in compact form which is rather similar to the one for electrodynamics
(Abelian U (1) gauge theory).

In the first-order formalism (cf (3.2.72)), the Lagrangian for a non-Abelian theory reads as

Lym = 3 Tr{@Au — 3uAs + OlAL Ayl — 3F0)F ) (3.2.95)

whereF,,,, and A, are considered to be canonical variables. Passing to the three-dimensional notation as
in the case of electrodynamics, we can write (cf (3.2.74)—3.2.76))

Lym = —3 TrEkAk — $H (Ex, A) + AoC] (3.2.96)
where
Ex=Fw Bk=3eajkFji  H(EKA) = 3(EE+BD) (3.2.97)
C(x) = kEk(X) — g[A(X), Ex(X)] (3.2.98)
Fu = dAx — oAl + g[A, All. (3.2.99)

The same Lagrangian can be presented in component form:
Lym = —3[ERA2 — LH(ED, AY) + AZCA. (3.2.100)

Introducing the Poisson brackets

(ER00. AP(Y)) = 818%5(x — y) (3.2.101)

we can easily verify that
{C2(0), CP(y)} = gf2PeCe08(x — y) (3.2.102)
{/d3x H(ED, AY), Ca(y)} =0 (3.2.103)

where 20 are the structure constants of the gauge Lie algebra g. Thus C2 is the set of the first-class
congtraints and they produce no new higher-order (secondary, etc) constraints.

According to the general method for quantizing systems with non-holonomic first-class constraints,
we have to add a subsidiary gauge condition. For the Yang—Mills fields, quite a number of gauges have
been invented; the most common are:

&A; =0  the Coulomb gauge (3.2.104)
A% =0  theLorentzgauge (3.2.105)
n“A% =0  theaxial gauge (3.2.106)

where n,, is aunit four-vector.
Let us consider Coulomb gauge condition (3.2.104). Conditions (3.2.60) and (3.2.56) for this
concrete case read as follows:
{0k AR(X), 9j A‘]?‘(y)} =0 (3.2.107)
det{C?(x), akAE(y)} = det[dk(k — gfabCAﬁ(x))a(x —y)]#0. (3.2.108)
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The correctness of (3.2.107) is obvious. For (3.2.108), in the Coulomb gauge the operator

M\C dEEf 8k8k8ab _ gfabCAE(X)ak (32109)

(C standing for Coulomb) is invertible in the framework of perturbation theory in the coupling constant
g. Indeed, the inverse operator can be determined from the integral equation for its kernel:

5ab

AL (X’
McH(x, y) = % x=V] + % / dx’ facdlx"f(x),'ak(mcl)db(x’, y) (3.2.110)
which can be solved by iterationsin g. Note that for large fields A} (so that a perturbative solution is
not valid) the operator Mc acquires zero eigenvalues so that condition (3.2.108) provesto be violated. In
fact, thisis ageneral situation for any gauge condition and it is called the Gribov multi-valuedness or the
Gribov ambiguity (Gribov 1978). Since this multi-valuedness appears at large values of fields, it does not
influence the perturbation theory for gauge models. We shall not discuss this problem any further in this
book (for more details about this problem see, e.g., in Halpern and Koplik (1978) and Dell’ Antonio and
Zwanziger (1989)).

3.2.4 Path-integral quantization of Yang—Millstheories

We continue the study of Yang—Mills theory in the Coulomb gauge. The very form of this gauge (cf
(3.2.104)) prompts the orthogonal separation into longitudinal and transversal parts:

Ak = AL + Al (3.2.111)

where
Ak (x) © dacx)  foran appropriate a(x) (3.2.112)
AL = 0. (3.2.113)

It is seen that the transversal part AI plays the role of the unconstrained physical coordinates G (see
section 3.2.2). The momenta conjugate to them are the transversal components of the gauge tensor EI
and the constraint conditionisimposed on thelongitudinal part E'-(x): if weintroduceL(x) by therelation

EL () = kL(X)
congtraint (3.2.98) provesto be
kL — 9[Ax, dL] — 9[Ak, Eg] = McL — g[A«. Eg] =0, (32.114)

where we meet again the operator Mc defined in (3.2.109). This equation alows us to express the
longitudinal component Ef through E} and A}. After substituting this solution into the Hamiltonian
H (A, E), we obtain the Hamiltonian Hpn(Ag, EF) in terms of the unconstrained variables A} and EJ.
Thus the true physical variables for a Yang—Mills field are the components AI of the three-vector Ax
subjected to the constraint (3.2.113). This meansthat the Yang—Millsfield has only two possible states of
polarization.

Now we are ready to write down the path integral for the corresponding S-matrix. In terms of the
unconstrained physical variables, it isadirect generalization of that for a scalar field (cf (3.1.85))

Ks@ (k). ak):t.to) = lim /]‘[ Da®(k, )Dal(k, 1)

to—>—o0 j.b
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5 1 dm® 2 A X A A
xexp{|/d ké[ >0 ) aPk vadk, b + aiP(k, to)al (k,to)}

b=1 j=1

t
x exp{i/ dt/dSX [% TrE (x, DA (X, 7) — B (x, DA/ (X, 1))
to

- th(EF,AT)“ (3.2.115)

where (cf (3.1.77))

(3.2.116)
(EDP(r,7) = 7(277)3/2 Z/d3k\/;(ajfb(k, D! (ke " —alk, uf ok
j=1
o=k +m? (3.2.117)

with the two polarization vectors ulj, j = 1,2 (any two orthonormal vectors orthogonal to k). The
asymptotic conditions have the form (cf (3.1.86))

aP(k,t) — ar®(k) explioxt}  aP(k, to) — aP(k) exp{—iwxto}. (3.2.118)
—00 ——00

Generally speaking, this formula solves the problem of constructing the S-matrix for the Yang—
Mills theories. However, it is not practically convenient. The main obstruction to its direct application
is the necessity of knowing the Hamiltonian Hpn. An explicit derivation of this Hamiltonian requires the
solution of equation (3.2.114), in other words, the inversion of operator Mc. Infact, we can only do this
perturbatively, i.e. we can present M L asaninfinite seriesin the coupling constant g. Althoughthisisjust
atechnical difficulty, it prevents actuaJ practical calculations in gauge theories as well as troubling their
general analysis (e.g., proof of their renormalizability). To overcome this difficulty, we can use formulae
(3.2.67)—(3.2.69) (more precisely, their generalization to an infinite number of degrees of freedom) and
present the S-matrix as the path integral over all fields Ay, Ex (k =1, 2, 3):

dim®
Ks@*(k). a(k): t.to) = lim /]‘[ [DAO(X)H(DA (x)DEE(x))}

t0~> OO

5 1 dm® 2 A A A A
xexp{|/d ki[ >0 Y aPk. valk, t) + aP k. to)al(k, to)}

b=1 j=1

H t
x exp{%f[ d‘r/dgx TIE (X, T)A (X, T) — El (X, T)A (X, T)
0

+ E2(x, 7) + BA(X, 1) — 2A0(X, T) (A El (X, T) — IAI(X, T), El (X, r)])]}
x ]_[5(8|A|) det Mc[A]. (3.2.119)
r,t

Here the boundary terms a}*b(k, t), a:?(k, tp) are defined by the preceding formula (3.2.118) (i.e. they are
constructed only viathe transversal components A|T of the Yang-Millsfield).
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The momenta E; enter the exponent of (3.2.119) quadratically and we can integrate over them. For
the normal symbol of the S-matrix, thisyields:

dm® 3 1
S:m*lf [T [1PAa0 []s@A) det MclA] exp{i/dxéTr(F,wF’”)} (3.2.120)

a=1 ;,L:O X

where the integration goes over &l the fields A, with a fixed asymptotic behaviour for their transversal
(in the three-dimensional sense) components:

A0 —— AT (X &) (3.2.121)

2

| 1 1 g ke

(ADP(X; 8 = G » /d3k —zw(a}*b(k; doul (ke ket g inuf (oek ety
i=1 v

(3.2.122)
alk:in=ak  aP(kou=aPk) =12

The normalization factor 91~ has appeared due to the integration over the momentaE; .

In path integral (3.2.120), the §-functional together with the determinant select one representative
from each class (orbit) of gauge-equivalent fields. Note that the asymptotic conditions (3.2.121) are also
adjusted to the Coulomb gauge condition.

<& Diagram technique for the Yang—-Millstheory in Coulomb gauge

Separating out terms higher than second order in the exponent of the integrand in (3.2.120) and expanding
the exponential in the perturbation series generate the Feynman diagram techniquesfor Yang—Millstheory.
The propagator is defined by the Gaussian integral (i.e. the integral (3.2.120) with al higher-order terms
being dropped out)

dim® 3
ZolJ] = Z[I%g=0 = m—lf [T [TPA 00 ] ]8@A) det MclA]
a=1 ;1,:0 X
: 1 , 1
X exp |/dx Tr é(avAM —9,A)) — EJ“AM (3.2.123)

where the class of functions to be integrated over is defined by the boundary conditions (3.2.121) and
(3.2.122) imposed on Ay,.

The new feature of this free generating functional in comparison with that for a field theory without
congtraints (cf (3.1.100)) is the presence of the §-function in the integrand of (3.2.123). This integral
reminds us of the problem of a Brownian particle with inertia (see section 1.2.4, equation (1.2.70)). As
we learned there, in order to solve integral (3.2.123), we have to find the extremum of the exponent under
the condition defined by the §-functional with the help of the Lagrange multiplier method or, equivalently,
we just use the path-integral representation (3.1.193) for the §-functional. The latter method gives

dm& 3
. 1
Zo[3°] = m*lf [T ] PAL 0 DAx) exp {| / dx [— 2OAL - 9uAB)? + JBAR +AaakAﬁ} }
a=1 u=0
(3.2.124)
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Solution of the extremality equation yields (problem 3.2.2, page 98)
b I a 224 av
Zo[J°] = exp{E / dxdy J#(x)Dg (x — y)J (y)} (3.2.125)
where D¢" (x — y) isthe propagator of the Yang—Millsfield in the Coulomb gauge:

1 ; 1 kmki
DM (x) = — /dke—'kx— PULIALAL ml =123
c & (27)4 k2 +ie k|2 ( )

1 i 1
DX(x) = — B / dke Ika (3.2.126)

DI(x) = DA"(x) = 0.

This expression clearly shows that only the transversal componentsAI really propagatein time.

Using the usual methods of the path-integral formalism, i.e. representing the higher-order
(interaction) terms via functional derivatives, we could now develop the complete perturbation theory
technique, including the diagram representation. However, the essential shortcoming of the Coulomb
gauge and the corresponding perturbation theory expansion is the absence of an explicit relativistic
invariance. Therefore, instead of dealing with the physically transparent but technically inconvenient
(because of the absence of an explicit Lorentz covariance) Coulomb gauge, we shall learn, in the next
subsection, a method for a transition to any gauge condition in the path integral and then develop the
perturbation theory rulesfor the relativistically invariant Lorentz gauge (3.2.82) and its generalizations.

3.25 Covariant generating functional in the Yang-Millstheory

In order to construct an explicitly relativisticinvariant S-matrix in each order of the perturbation theory, all
the ingredients of the perturbation expansion should have simple transformation properties with respect
to the Poincaré group. Such an expansion is called covariant perturbation theory. In particular, for
Yang—Mills theories, such a technique must be based on some relativistically invariant gauge condition.
In the case of pure Yang—Mills theory (i.e. without matter fields) the simplest condition is the Lorentz
gauge (3.2.82). In this subsection we shall show that, using the known path-integral representation for
the generating functional (for the S-matrix or Green functions) in the Coulomb gauge, we can pass to
the Lorentz (or any other suitable) gauge condition (Faddeev and Popov 1967, De Witt 1967). From a
geometrical point of view, we have to transfer the path-integral measure defined on the surface specified
by the Coulomb gauge dxAk = 0 to the surface specified by the Lorentz gauge 9,,A,, = 0.

<& Faddeev—Popov trick
Let usintroduce the functional A [A] defined by the equality

AL[A] / Du(x) 8[*A] = 1 (3.2.127)

o

where AJ} denotes the gauge transformed field: A’} (x) e u()A,U~(x) + @,ux)u~tx) and the

integrationis carried out with the measure

Dux) = [ [ dnux) (3.2.128)
X
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where u(x) are elements of the gauge group & and dqu(x) at each x istheleft- and right-invariant measure
(the so-called invariant Haar measure, see supplement 1V) on the group &, i.e.

dy (Upu) = dy(uug) = dyu U, Ug € &. (3.2.129)
Dueto the latter property, the functional A [A] is gaugeinvariant:
AL[AY] = AL[AL. (3.2.130)

Since the left-hand side of (3.2.127) is equal to unity, we can harmlessly insert it into the integrand
of (3.2.120), so that the S-matrix symbol now takes the form

3
S= N*lf ]_[ DA (X) Du(x) S[0A/] det Mc[A]
n=0

X AL[A]a[aHA;]exp{i/dx%Tr(FwFﬂ”)}. (3.2.131)

The next step is to introduce, in analogy with (3.2.127), one more gauge-invariant functional Ac[A],
defined by the equality

Ac[A] / Du(x) S[kAL] = 1. (3.2.132)
It is readily seen that on the gauge surface 9xAx = 0, the functional Ac[A] coincides with det MclA].
Indeed, if Ak satisfies oAk = 0, the only contributionto theintegral in (3.2.132) (at |east in the framework

of the perturbation theory) comes from the infinitesimal vicinity of u(x) = 1. Hence, we can put
u(x) ~ 1+ a(x) and, therefore,

WA = ddar(X) — GIAKX), dar(X)] = Mcar(X). (3.2.133)

Taking into account that the substitution u(x) — «(x) = u(x) — 1 has unit Jacobian, Du(x) = Da(X),
we can calculate integral (3.2.132) explicitly (problem 3.2.3, page 99)

AclAlly Ao = | [ det Mc(A). (3.2.134)

After changing the integration variables
Ay — AL (3.2.135)

(with unit Jacobian) and using the equality (3.2.134), integral (3.2.131) can be rewritten as follows:

dm® 3 L
S= m*lf ]_[ ]_[ DA (X) DU(X) 5[0, AL ALIAISIAIA! 1ACIA]
a=1 u=0

X exp {i / dx 3 Tr(F,wF’”)}. (3.2.136)

Thedefinition (3.2.132) of thefunctional Ac[A] together with the substitution (the change of the variables
u~! — uintheintegral over u),

AT Al (3.2.137)
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show that (3.2.131) is, in fact, the expression for the S-matrix in the Lorentz gauge:
3
S= m—lf ]_[ DAL (X) 8[0"A,]ALIA] exp {i / dx 3 Tr(F,wFW)}. (3.2.138)
n=0

Quite similarly to the case of the functional Ac[A] (cf (3.2.134)), we can show that
ALIATl A, —o = det ML (A) (3.2.139)

where "
MLa(x) = Oa — ga*[A,, al. (3.2.140)

This method of transition from the Coulomb gauge condition to any other one (in particular, to the
covariant L orentz gauge condition) is called the Faddeev—Popov trick (Faddeev and Popov 1967).

< Asymptotic boundary conditionsin the L orentz gauge: justification of the Faddeev—Popov trick

When performing the manipulations which have led us to the covariant gauge condition in the path
integral (3.2.138) for the S-matrix, we did not pay any attention to the asymptotic conditions, so that
our consideration looks a little formal. In fact, we need two types of asymptotic condition:

(i) First, we did not clarify the way to calculate det ML (A): the complete definition of operator ML (A)
requires the determination of asymptotic conditionsfor r — +oo. Indeed, to define the determinant
explicitly, it is convenient to use the formula

det M (A) = exp{TrIn M (A)}
= exp{TrInO + Trin(1 + O~ 1K (A))} (3.2.141)

where the operator K is the second term in the operator ML in (3.2.140): K(Af dEEf —gar[AL, f].
The trace operation in (3.2.141) also implies integration over the coordinates. The first term in the
exponential (3.2.141) gives a non-essential contribution to the normalization constant (since it is
independent of the gauge fields). The second term gives a contribution to the action which can be
written as the series

_a\n+1
D Tr(@O~1K)"

Trin(l+ 07 KA) = >

n

et n
= Z(—l)”“% / d*x1- - d*%n THAM (X)) - - AP (X))
n=1
X 0y D(Xg — X2) -+ - 0y D(Xn — X1). (3.2.142)

Here D(x) is the Green function of the d’ Alembert operator [J, which, of course, is not uniquely
defined unless appropriate boundary conditions are imposed. Any Green function of the d’ Alembert
operator can be presented via the Fourier transform

1 o 1
D= ~ G / ol“ke—'k"P (3.2.143)

but without arulefor pole bypassing in the integrand, this expressionisformal. Boundary conditions
just determine away of bypassing the singularity and select one of the possible Green functions.
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(if) Essentialy the same problem appears for the Green function D,'ZV(X — y) corresponding to the
quadratic form in the Yang—Mills action with a Lorentz gauge (the superscript ‘L’ is related to
‘Lorentz’, not to ‘longitudinal’). The formal Fourier transform for D,IIU(X — y) reads as

. K.k, \ 1
/ d*k e 1k <g,w - ’;—2> - (3.2.144)

L —
Dlw x) = (27.[)4

Again, we haveto clarify the rule for bypassing the singularities.

In order to derive the asymptotic conditions correctly, we have to transform a path integral with the
Coulomb gauge condition into a path integral with the Lorentz gauge condition before the transition to the
limitt — oo, tg — —oo in the expression for the S-matrix. Note that the change of variables(3.2.135)

Ay — A = u AU+ (3u D (3.2.145)

used in the transformation of the path integral to the Lorentz gauge should not violate the Coulomb
condition dxAx = 0, as well as the boundary conditions (3.2.118) for the transversal components A}, at
the boundary timest and tg. Thisimplies arestriction for the group elements:

u(r,t)y =u(r,tg) =1 (3.2.146)
or, equivalently, arestriction for the corresponding Lie algebra elements
a(r,t) =a(r,tp) =0  ux) =™, (3.2.147)

Thus, the operator M (A) actsin the space of the functions a(x) (with values in the Lie algebra) which
satisfy conditions (3.2.147). Hence, we have to look for the Green function entering the expansion
(3.2.142) subjected to the same conditions (3.2.147). Such a Green function has the form

/dSk dkix—y) SNUKIOC — to)) sin(lk|(y° — 1)
[k| sin([k|(t — to))

Di(x,y) = forx? < y® (3.2.148)

(2m)3
Di(x,y) = Di(y,x)  forx®>y°

With this definition, the operator ML (A) provesto be positively defined and this fact justifies the absence
of the absolute value sign on the right-hand side of (3.2.139) (otherwise, we should write | det ML (A) ).

We shall return soon (see (3.2.156)) to the question about pole bypassing in (3.2.143), but before
that, let ustreat the Green function D,IIU (X) (3.2.144) in the Lorentz gaugein asimilar way. First, we have
to solve the equations

DA, = J, (3.2.149)
A, =0 (3.2.150)

where the source J,, satisfies the consistency condition
"3, =0 (3.2.151)
with the boundary conditions at finite timest, tg (cf (3.2.116) and (3.2.118)):
aT(k, t) = a*j‘(k) exp{iwkt}
aj(k, to) = aj (k) exp{—iwkto} j=12
okAk(r,t) = okAk(r,t9) =0
doAo(r, t) = doAo(r,to) =0

(3.2.152)
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(the last condition follows from the actual system (3.2.149)). The solution of this system hasthe form

AT = A (x) + / dty Dex, I (y)  to<x% y0 <t

2
1 1 . ) . . ) .
A0 (x) € WZ / d3kE(aT(k)u|J (—kye KT+ | ayul (k%) (3.2.153)
j=1
Ao(X) = / d*y Da(x, y)Jo(y)
AL (x) = / d*y Da(x, Y)J (y) (3.2.154)

where Do (X, y) is another Green function of the d’ Alembertian, which this time acts in the space of
functions f (x) with the boundary conditions

30 f (X) |Xo=t == 80 f (X) |Xo=t() == O
This Green function reads as

/ 81 ey COSUKI 0 — 1) cosIkI(Y° — t0))
[k| sin([K|(t — to))

Da(x,y) = forx? <y (3.2.155)

(2m)3
Da(x,y) = Da(y,x)  forx9 > y°.

The Green functions D1 and D2 look somewhat disturbing because they obviously do not have well-
defined limitsat t — oo, tg — —o0o, while such limits exist for the transversal components of the
Yang-Mills field (see (3.2.153); this relates to the fact that A| corresponds to the physical polarizations
of the Yang—Mills field). On the other hand, the path integral for the S-matrix in the Lorentz gauge
does exigt, since it is, by construction, equal to that in the Coulomb gauge for which the infinite time
limit is well defined. Hence, the combined contribution of the functions D1 and D> to the perturbation
expansion leads to a well-defined limit expression. A straightforward proof of this fact in all orders
of the perturbation theory is not easy. Formally, this limit can be found by the simultaneous identical
regularization of the Green functions D1 and D2 (Faddeev and Slavhov 1980). The most convenient way
isto add an infinitesimal imaginary quantity to the momentum variable:

k? — k% —ie. (3.2.156)

After this substitution, the oscillating function in (3.2.148) and (3.2.155) will either increase or decrease
and have infinite time limits. Moreover, in this case, the infinite time limits of both D1 and D, coincide
with the standard causal Green function D¢(X).

Thisdefinestherule of pole bypassing for the function D in (3.2.143) (cf (3.1.93)) and from (3.2.153)
and (3.2.154) we can read off the covariant Green function (3.2.144), together with the bypassing rule:

1 [ K.k 1
ke ™ (g, — "2 ) —— . 2157
(2n)4/d € (g" k2+is) K2+ ie (3.2.157)

In the Lorentz gauge, it is this Green function that appears, instead of the Coulomb function ng, in
an expression analogous to (3.2.125) for the generating functional Zo[J] in the zero coupling constant
approximation.

Thus, we conclude that all singularity bypasses are fixed by the infinitesimal shift of the momentum
variables in the complex plane: (k? + i)™, and the path-integral representation for the S-matrix of the

D, (X) = —
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Yang—Mills theories in the Lorentz gauge has the form (3.2.138), where the integration goes over fields
with the following asymptotic behaviour:

AL(X) —— Ap(X;in) AL (X) —— AL (X; out) (3.2.158)
x0— —00 x0— 00

with A, (x; in), A, (x; out) being the solutions of the equations
OA,(x) =0, AL, (X) =0 (3.2.159)
parametrized by the amplitudes a;’; (k), a, (k), such that

ag=0 ka =0
ag=0 ka = 0.

Note that in A, (x; in) the amplitude a isfixed, whilein A, (x; out) it isthe amplitude a;° that is fixed.

<& S-matrix for Yang-Millstheory in the ¢-gauge

Formula (3.2.138) is not the only possible relativistically invariant expression for the S-matrix in Yang—
Mills theory. The point is that we can integrate over gauge-equivalent classes of fields choosing not a
single representative from each class, but some compact subset of representatives. The only requirement
isthat the resulting path integral be convergent, in which case this generalized approach may only change
the normalization factor. An explicit transition to the corresponding expression can be produced in much
the same way as that used when passing from the Coulomb to the L orentz gauge.

Let usinsert in theintegrand of (3.2.120) unity represented in the form

1= Ag[A] / Du(x) BIAY] (3.2.160)

where B[A;‘L] is some gauge non-invariant functional, such that the integral on the right-hand side of
(3.2.160) is convergent. Acting as in the case of the transition from Coulomb to Lorentz gauges, we
obtain the path-integral representation for the S-matrix or generating functional of the type (3.2.138)
where §(9#*A,,) det ML [A] is substituted by Ag[A] [ Du(x) B[Al‘j]. The choice of the functional B[A] in
the form

BIA}] = exp{—4l.7 / d*x Tr(a"AM)Z} (3.2.161)
(o € R isaparameter) leads to the perturbation theory with the following free Green function
1 i K.ky(1— o) 1
[+ _ 4 ikx D
B ) = (2n)4/d ke (g‘” K2+ s )k2+ie' (3.2.162)

Varying the parameter «, we obtain the important particular cases:

(i) a a = 0, wereturn to the Lorentz gauge (note that in the limit « — 0, the functional « B[A] in
(3.2.161) is converted to the 5-functional);

(if) a o =1, we obtain the diagonal (in spacetime indices) Green function which is very convenient for
practical calculations.

The simplest way to derive the corresponding path-integral representation for the S-matrix and to
prove formula (3.2.162) goes as follows. Let us, firdt, transform the path integral (3.2.138) in the usual
Lorentz gauge into that in the generalized Lorentz gauge

AL (X) = a(x) (3.2.163)
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where a(x) is an arbitrary matrix function. To do this, we repeat the Faddeev—Popov trick using the
corresponding functional Az[A] defined by the equality

AalA] / Du(x) S[0"Al, —a] = 1. (3.2.164)

Note that, on the surface
A, —a=0

the functional Aa[A] coincides with det ML. Thus the generating functional for the S-matrix can be
written as

3
S= m*lf [ [ DAL 0 819#A, — alALIA] exp {i / dx 3 Tr(FWF‘”)} . (3.2.165)
n=0

Since theinitial S-matrix functional does not depend on the function a(x), we can integrate it over a(x)
with the weight

exp{—4|‘7/d4x Traz(x)} (3.2.166)

which leads to a simple change in the normalization factor. This integration yields the S-matrix in the
form

3
S= m*lf [ PA%x) det MLIA] exp {u/ dx Tr [%FWF’“’ - %(aMAM)Z} } (3.2.167)
n=0

and, hence, producesthe free Green function (3.2.162).
Extending the concept of gauge conditions, the functional (3.2.167) is called the S-matrix in the
«-gauge.

3.2.6 Covariant perturbation theory for Yang—Mills models

Having at our disposal the covariant generating functionals, obtained in the preceding subsection, we are
almost ready to develop a covariant perturbation expansion and the corresponding diagram techniques.
The only non-standard peculiarity of the functionals (3.2.167) or (3.2.138) is the presence of the non-
local functional det My, so that they do not have the customary form of the Feynman functional exp{iS}
under the sign of the path integral, where Sisthe action of a system.

e Note, however, that in the case of quantum electrodynamics, the operator ML reduces to the
ordinary d’ Alembertian (cf (3.2.140); for the Abelian case, the commutator in thisformulaidentically
vanishes), so that det I\WﬁQED) does not depend on the gauge (electromagnetic) fields. Therefore, we
can just remove the determinant from the integral sign and readily devel op the standard perturbation
theory expansion for quantum el ectrodynamics(see, e.g., Itzykson and Zuber (1980); for the standard
operator approach, see any textbook on quantum field theory, e.g., Bogoliubov and Shirkov (1959)).

In the general case of a non-Abelian Yang-Mills theory, the determinant can be expressed as a path
integral over anticommuting scalar fields which are commonly referred to as Faddeev—Popov ghosts.
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<& Faddeev—Popov ghosts

Using the results of sections 2.6 and 3.1.3, the determinant det M can be expressed via the integral
representation

dim®
det M, = / [] pe? Dt exp{i / d*x Ca(x)Mabcb(x)} (3.2.168)
d=1
where €2, c® (a,b = 1,...,dim®) are anticommuting scalar functions (generators of the Grassmann

agebra). The boundary conditions for the fields €2, c® have essentially the same form as for the Yang—
Millsfields:

c(x) —— c(x; dn)
t—+4+o00

3.2.169
E(X) St c(x; 80 ( )
( ; OUt) / ()\’*a(k t)e ik-r+iowt +ﬁ (k’ out)elkr th)
27t (27)3/2 V20
- (3.2.170)
Cr(x: k) = o )3/2/ 3k—(ﬁ*‘"‘(k foe kel Ak n)dkrTien),

To obtain the chosen determinant, we have to input the zero boundary conditions for the anticommuting
amplitudes:

B*3(k;out) =0  A*3*(k;out) =0
pa(k;in)=0  A%(k;in) = 0.

Using this integral representation, the S-matrix generating functional (3.2.167) can be cast into the
form

3
s=m1 / [ [ PAL(x) De(x) DEx) exp{i / d4xcg“"} (3.2.171)
n=0
here
YM 1 iny 1 " 2 1. "
L, =Tr éFWF - E(a AL — EC(Dc—ga [A. c]) (3.2.172)

Au(x) e AL 8
C(X) ——=> C(X; &) (3.2.173)

C(X) —— C(x; dn).
t—>+o0

Due to the introduction of the fictitious (‘ghost’) fields c, c, called the Faddeev—Popov ghosts
(Faddeev and Popov 1967), we have managed to present the generating functional for the non-Abelian
Yang-Mills theory in the standard form of the path integration of exp{i Sy}, though with the effective
guantumaction Sy including the non-physical anticommuting fields. Thisresult allows usto develop the
perturbation theory for an arbitrary Yang—Mills model in much the same way as for any field theory.
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<& Perturbation theory expansion and diagram techniques for the Yang-Millstheory

Let us passin the usual way (cf section 3.1.1) to the generating functional Z[J, 1, ] for Green functions:
3
Z[J, 7. 0] = m—lf ]_[ DA, (X) De(x) DE(X)
n=0

X exp {i / d*x LM + I A2 + 7% + cana} ) (3.2.174)

Here the sources 72 and n# anticommute with each other and with the fields €2 and c2. The representation
of the higher-order (i.e. higher than quadratic) terms of the exponential in (3.2.174), which read as

SnilA., € ¢l =3 Tr / d*X (29(3,A, — 3, ADIA%, AV T+ 0% A, A AR, A’1+gE0M[A,,. ) (3.2.175)

by the variational derivativesand followed by integration of the remaining Gaussian integrand yields

16 16 156

213,70 = exp{ism [TH’ =3 TE“
mn

X exp {—IE / d%x d4y[J3(X) ngb(x ) ‘]15) 1 273(x) Dab(x _ Y)Ub]} . (32.176)

Note that the derivatives with respect to 7 act from the left, and those with respect to » act from the right.
The expansion of thefirst exponential in (3.2.176) in the Taylor series producesthe Feynman diagram
techniquelisted in table 3.3.
Each Feynman diagram constructed of the elements from table 3.3 gives a contribution to the
corresponding Green function. The contribution of any diagram is accompanied by the combinatorial
factor (which can be straightforwardly derived from (3.2.176))

_1)s . |-V-1
( r) ((2]'1)4> (3.2.177)

where V is the number of vertices in the diagram, | is the number of internal lines, s is the number of
ghost loops and r is the diagram symmetry factor, counting the number of possible transpositions of the
internal lines of a diagram at fixed vertices (see also supplement I11).

< Yang—Millsfieldsinteracting with matter fields

The Yang-Millsfields and the corresponding particlesin realistic physical models (in particular, photons,
gluons, W=, Z0%-bosons; see below section 3.2.8 for a short discussion of the physical applications
of gauge theories) serve as interaction mediators between other fields, called matter fields. The latter
correspond to the particles (e.g., electrons, muons, quarks) which are the building blocks of any kind of
matter in nature. Infact, thisterminology is rather conditional: for example, we can truly state that such a
basic ‘ matter building block’ as the proton (as well as other hadrons) consists both of quarks and gluons.
However, nowadays this terminology is customary and we shall follow it.

The addition of matter fields (i.e. spinor or scalar fields) to a Yang—Millsmodel does not bring up any
new problems. The gauge group still acts on the gauge fields in the same way as in the absence of matter
fieldsand theclassical initial Lagrangian still remains gaugeinvariant (see section 3.2.1). Therefore, path-
integral quantization requires a gauge condition which fixes the choice of representativesin the classes of
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Table 3.3. Correspondence rules for the Yang—Mills theory,

Physical quantity Mathematical expression Diagram element
b w,a k v, b
Propagator ab 8 (1 — a)kyky
of gauge fields Di (k) = “K2+ie v — 2 +ie “0000®
a k b
Propagator Dab _ sab .
of ghost fields g k2 + g
k,v,b
P, w,a
Three-interaction Vs = —igfapcl(p — K)p G .
vertex + (K= DpuGup + (G — PuGyp] 9P
v b P, c

Four-interaction Vs = 92[ fabe fede(9up Qv — Guo Gup)
vertex + face fhde(9uv9po — Guo Gup)

+ fade febe(9upJov — 9uvop)]

uw,a o, d
k,b
p’ M, a (',

Ghost <> Yang-Mills .9 3 OO0,
field vertex Veea = '2 fabc(k — Q) *\ g,c

gauge-equivalent Yang-Mills fields and provides the convergence of the path integral for the generating
functionals. Path integration over matter fields (spinor v, ¥ or scalar ¢) occurs without any peculiarities.
Of course, arigorousderivation, which we drop here (the gap is partially filled in problem 3.2.4, page 99),
must be based on the Hamiltonian formalism; essentially, it repeats the consideration previously outlined
for the pure Yang—Mills theory (see Faddeev and Slavnov (1980) and Gitman and Tyutin (1990)).

The matter fields are transformed according to the representations T (u(x)) of the gauge group &:

Ui > TPy i j=1...,d

5 (3.2.178)
610 = TP 0 i j=1....d
where Ti§l) (u(x)) and Tiﬁz) (u(x)) are some matrix representations of dimensions d; and dy, respectively,
for the elements u(x) € & of the gauge group &. .
Consider atypical model with non-Abelian fields which contains a multiplet of spinor fields ' (x),
amultiplet of charged scalar fields ¢ (x) and the gaugefields A, corresponding to agauge group &. The
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Lagrangian of the model has the form

L= - 4—92F§UF3“” + 0y @i+ it A YT —my gy

+ Z [(3,.6ij + iti(jz)aAZ)(pJ |2 _ m<§)€0*i§0i
i
—hijid y et - hi*jkl/_/i Yl — Fhijkd " p*l k! (3.2.179)

where ti(-l)a and ti(-z)"’1 are the generators of the group & in the representations Tigl) and Tiﬁz) (cf (3.2.178)),
respectively. Thefirst termin (3.2.179) is the pure Yang-Mills action for the gauge fields, while the rest
of thetermsin thefirst line describe the spinor fields and their interactions with the gauge fiel ds; the terms
in the second line are responsible for the scalar matter fields and their interaction with the gauge bosons;
finaly, thetermsin the third line represent the Yukawa interaction between the spinor and scalar fields, as
well asthe scalar self-interaction (the very last term).

The starting point for deriving the perturbation theory expansion for the generating functional
Z[J,...] (or for the Smatrix symboal) is the path integral (in the Coulomb gauge)

213, p, 71,0 = /DAN Dy Dy Do 8 (A) det M
X exp {i / d*x [£ + JAS + Y 4y + ,ogo]} . (3.2.180)

The repetition of the steps discussed earlier for the pure Yang—Mills theory leads to the following
expression for the generating functional in the «-gauge:

16 156
Z‘]v 1_7 7_1 =ex I d4X£ - PRI
[J.0,m,m, X, X1 p{/ '”t<|5Jg |5Xa>}

x exp{ / d*x d*y [J20DE(x — y) 32(y) + 7 0O (X — Yy (y)
+ ' 0DE (x = y)p) () + 2% ngxb(y)]} : (3.2.181)

Here we have extended the generating functional viainclusion of the sources x, x for the Faddeev—Popov
ghost fields (of course, the ghost fields do not appear in the physical amplitudes as in- and out-particles);
Lint isthe interaction part of the Lagrangian (3.2.179) (i.e. all the terms higher than second order in the
fields); D2, §!, D¢, D3 are the propagators of the corresponding fields; see (3.2.162), (3.1.106),
(3.1.93) and (3.2.176), respectively. As aresult, we have the new diagram elements depicted in table 3.4,
in addition to those presented in table 3.3.

<& Lagrangian, path-integral representation for the generating functional and the Feynman
diagramsfor quantum electrodynamics

If we consider electromagnetic interactions between leptons only (i.e. electrons, positrons, muons etc, see
section 3.2.8), the corresponding Lagrangian has the form (3.2.21), in general, with several spinor fields,
corresponding to the different sorts of charged lepton. (In the case of hadrons, the Lagrangian becomes
more involved; in particular it contains the so-called form-factors (see, e.g., Feynman (1972b).) Let us
consider, for simplicity, the interaction of photons with only one sort of lepton field, e.g., with fields
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Table 3.4. Correspondence rules for the Yang—Mills theory with matter fields, in addition to table 3.3.

Physical quantity Mathematical expression Diagram element
i wa kb
Propagator o 8
of spinor fields & o= K —my +ie
Propagator D — _ 8"l . pe
of scalar fields T K2-m2 +ie

i
) a
Spinor < ) B Da .
gauge-field Viay = 9vulj; j
interaction vertex

v, b i
,P
Scalar < //
gauge-field Vazy2 = igzguv(ti(kz)at L£j2)b + ti(k2)bt lijZ)a) \\
four-interaction vertex N
W, a j
p.
»
Sealar < (P—@,pn,a -

. 2 .
gauge-field Vp2p = g(ti(j 2 (P — Q) m\\ q,i
three-interaction vertex e

.\] /. k
. N o
Scalar < scalar I ‘v
Voa = ——(iik + Ajikl + Aijlk + Aji »
four-interaction vertex ot 2 ik A jik A Ailk) R
v »

Yukawa coupling
(spinor <> scalar field Vg, = hijk o k
vertex)
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Table 3.5. Correspondence rules for quantum electrodynamics.

Physical quantity Mathematical expression Diagram element
wookooy
Propagator o _ 1 B (1 — a)kyky
of photon fields Diav (k) = K2+ ie \ 9 k2 +ie i
) Iz
Spinor <
photon Vi ay =

interaction vertex

describing electrons and positrons. The standard calculations (in the «-gauge) discussed earlier cast the
Green function generating functional for QED into the form

16 168 156
Z[3, 7] = —i [ d%y L (-‘ sy i >}
[ 7. 1] exp{ '/ Y 753,00 T87(y) " 1 8n(y)

X /DAM(X)Dﬁ(X)Dn(X) exp{iSQED+/d4X [J“Au+ﬁ1//+1ﬁn“

- eof-i [y (F3) (V) 7 (T )|
= &P Y\i53.p) sy ) Ty

% exp{ —i / d*x d*x' [33#D%,(x — x) 3" + 7 S(x — x’)n]} (3.2.182)

Soep = /d“x [3AL(0"°0 = (1= 1/a)d 3") Ay + ¥ (iy™d, — my]. (3.2.183)

We recall that quantizing electrodynamicsis easier than that of anon-Abelian Yang—Millstheory because
the Faddeev—Popov determinant det M does not depend on the integration variables and, hence, can
be absorbed into the normalization constant (see the remark on page 73). The standard graphical
representation for the photon propagator and the el ectromagnetic interaction vertex isdepicted in table 3.5.
Note that due to the Abelian nature of the electrodynamics gauge group, i.e. the group U (1), thereis no
self-interaction of photons.

<& Lowest-order (‘tree’) approximation in QED: an example

As an illustration of a practical application of the covariant perturbation techniques in QED, let us
consider, briefly, the calculations for the so-called Compton scattering of photons on electrons:

y(K) +e (p) — yKk)+e (p) (3.2.184)

i.e. for the process of (elastic) scattering in which both the initial and final states correspond to a free
electron and photon with different momenta. The Feynman diagrams for this process in the lowest
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k K

p p’ p p/

Figure 3.11. Diagrams for the Compton scattering on the electrons.

(second-order) approximation are depicted in figure 3.11. Using the Feynman rules, we can immediately
write the expression for the amplitude of the Compton scattering:

P+K+m

(p',K'; outl p, ks in) = (—i)zez[ﬁr(/*)(p’)w’mwv;>(p)
= / p - K/ +m ! (—
+ vr(/+)(p )¢Am¢k v )(p)i|~ (3.2.185)

Here vr(’)( p) and ﬁﬁ“( p) aretheinitial and final electron states (Dirac spinors).

The probability of a transition upon which the momenta of the final particles (photon and electron
in the Compton scattering case) fall within theintervals (k’, k' + dk’) and (p’, p’ 4+ d p’) isgiven by the
expression (see, e.g., Bogoliubov and Shirkov (1959))

w = (27)*NE|(p, K'|p, K)*8(p+k — p' —K) dic_dp
¢ (27)3 (2m)3

(3.2.186)

where N¢ is a normalization constant. The practically measurable quantity is the so-called cross section,
which is equal to the probability (3.2.186) divided by the flux of theinitial particles.

3.2.7 Higher-order perturbation theory and a sketch of the renormalization procedurefor Yang—
Millstheories

The perturbation theory described in the preceding sections allows us to calculate Green functions,
amplitudes and probabilities with an arbitrary precision in an expansion parameter (usually, a coupling
constant g). However, the direct application of the Feynman rules in higher-order perturbation theory,
which corresponds to Feynman diagrams with loops, leads to meaningless infinite expressions (divergent
integrals). To recover the physical meaning of higher-order terms in the perturbation expansion and
eliminate the divergences, we must apply the so-called renormalization procedure.

We shall not go into all the details of this involved technique which deals mainly with Feynman
diagrams and the corresponding amplitudes rather than directly with path integrals (see, e.g., Bogoliubov
and Shirkov (1959) and Itzykson and Zuber (1980)). However, in gauge theories, the independence
of the renormalized amplitude of a specific choice of gauge condition should be proven. The basis of
such a proof (Faddeev and Slavnov 1980) is provided by the generalized Ward—Takahashi identities (cf
section 3.1.5). The derivation of these identities (called in the case of non-Abelian theories Savnov—
Taylor—Ward-Takahashi identities), as well as the revelation of some hidden and very helpful symmetry
of the effective gauge action (Becchi—Rouet—Stora—Tyutin (BRST) symmetry), prove to be simplest in the
path-integral formalism. Therefore, we shall only briefly describe the renormalization of gauge theories
stressing mainly the role of the path-integral technique.
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<& Divergences of matrix elements

Suppose we want to calculate the fermion Green function in QED. Then, in second-order perturbation
theory, we shall encounter the diagram:

k
p—k
This diagram corresponds to the following mathematical expression
2 = (M= (s(p) (3.2.187)
where the electron self-energy =@ (p) in second-order perturbation theory is expressed viathe integral
—K4+m 1
2@ (p) = / d*k UL gt 3.2.188
(p) PISE Ty~ ( )

(for simplicity, we have used the «-gauge with @ = 1 for the photon propagator). Counting the powers
immediately showsthat the integral over k in (3.2.188) is divergent. Indeed, an integral of the type

/oo ny, AKM -+ BKM-1 4

oo Ckl + DkI-1 ... ml=0

convergesonly if | > n 4+ m+ 1. In contrast to this, the integral in (3.2.188) contains the fifth order of k
(including the integration measure d*k) in the numerator and only fourth order in the denominator. Thus,
we have alinear divergencein this case. Other higher-order Feynman diagrams also contain divergences
of different powers.

Two primary problems arise in connection with the occurrence of divergences in higher-order
contributionsto the matrix elements:

(i) tofind all possible types of divergent Feynman diagram and
(i) to elucidate whether the number of these types of divergence depends on the order of the perturbation
theory.

The solution of these problems depends exclusively on the type of interaction term in the corresponding
Lagrangian. A characteristic which conveniently discriminates between the different situations and
different types of quantum field theory is the so-called superficial divergenceindex w. Thisis ascribed to
any diagram according to a definite rule, so that negative values of w correspond to convergent diagrams
while positive or zero values correspond to divergent expressions. The adjective ‘superficial’ is used
because a Feynman diagram may contain divergent subgraphs, although the overall index w is negative.
Thus, to be sure that a diagram is convergent, we must check the values of w for al the subgraphs of the
given Feynman diagram.
In electrodynamics, the superficial divergence index for a Feynman diagram of an arbitrary order
hasthe form
w=4—3Ne — Npp (3.2.189)

where Ne isthe number of external spinor (electron—positron) linesin the diagramsand Nph is the number
of external photon lines. It isimmediately seen that only a limited class of diagrams with a restricted
number of external lines (less than five photon lines and four spinor lines) have a non-negativeindex w.
Thisisacharacteristic property of renormalizable quantumfield theories. In contrast, non-renormalizable
gquantum field theories have divergent diagrams with a differing number of external lines depending on
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the order of the perturbation expansion. Non-Abelian Yang—Mills theories aso belong to the class of
renormalizablefield models: the superficial divergenceindex o for them reads as follows:

w=4— :—;Nw — Nym — Ngn (3.2.190)

where Ny, is number of external spinor lines in the diagrams and Nym, Ngn are the numbers of external
lines corresponding to the gauge and ghost fields, respectively.

< Renormalization procedure

The divergences of renormalizable theories can be eliminated. More precisely, they can be absorbed
into a finite number of constants which can be associated with physically measurable quantities, such
as the masses and charges of particles. After substituting finite values of the quantities taken from
experimental data instead of a combination of the initial parametersintroduced into the field Lagrangian
and the divergent parts of the Feynman diagrams, al other calculationsin the theory become meaningful
and we can calculate any other quantities (elements of S-matrix, energy levels etc) and, hence, we can
predict any other measurements theoretically. A special procedure, referred to as renormalization, has
been devised for this purpose.

e Thefirst step of this procedureis the regularization of divergent diagrams. It is awkward to perform
calculations with divergent integrals and therefore it is necessary to temporarily modify the theory
so asto make al the integralsfinite. At thefinal stage, the regularization is removed.

e After regularization, we can proceed to eliminate the divergences. A special technique developed
for this is called the R-operation. This operation enables one to obtain physically meaningful
expressions which remain finite after the regularization is removed. In fact, the R-operation consists
of substituting the divergent parts and theinitial parameterswith experimentally measured quantities.

e Additional problems arise for gauge theories. As a matter of fact, the renormalization is equivalent
to aredefinition of theinitial Lagrangian. Therefore, in the case of gaugefields:

— it is desirable to choose an intermediate regularization which does not violate the invariance
under the gauge transformations;

— therenormalization procedure (R-operation) should not violate the gauge invariance and

— theindependence of the renormalized amplitudes on the specific choice of the gauge conditions
should be proven.

In proving the renormalizability of gauge-field models, we use Lagrangians containing hon-physical

fields (ghost fields and longitudinal components of gauge fields). This leads to aloss of an explicit

unitarity of the S-matrix, while the unitarity is a necessary condition for the self-consistency of any

field theory. Fortunately, there are also gauges leading to Lagrangians which do not contain non-

physical fields and have explicitly unitary amplitudes (but which are highly inconvenient for the

proof of renormalizability). Thus, the invariance of a renormalized amplitude with respect to the

choice of the gauge means that the theory is both unitary and renormalizable.

<& Remarkson regularization methods

There are severa regularization methods: the Pauli—Villars procedure, the method of higher covariant
derivatives, the dimensional regularization etc. Perhaps the most natural regularization is the lattice one,
i.e. the discretization of space and time and transition to the case of alarge but finite number of degrees of
freedom. In fact, in this chapter we introduced field theory itself using this regularization. Unfortunately,
thisregularization has the essential disadvantage of losing an explicit relativistic invariance. Nevertheless,
it plays an essential rolein field theoretical calculations and we shall consider thisin chapter 4.
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In the present section, we shall illustrate the idea of regularization with the example of dimensional
regularization. Thisis based on the fact that the superficial divergence index of a diagram significantly
depends on the dimension d of the space, e.g., thisindex for QED (cf (3.2.189)) can be presented in the
form

L
0= Z(n +n—-2—dm-1) (3.2.191)
I=1
where the summation over al internal lines of the diagram is carried out; L is the number of internal
lines, r| isthe order of the polynomial corresponding to the internal line and m is the number of vertices.
Therefore, the integrals which are divergent in a four-dimensional space may prove to be convergentin a
space of smaller dimension. The number d can be thought of as being a not necessarily positive integer,
but also of being a non-integer and even complex number.
Before starting actual calculations, it is necessary to formulate the rules for treating tensor quantities
and the y-matrices in a d-dimensional space with an arbitrary d. Thisis done by the continuation of the
usual rulesfor the summation of tensor indices and y -matrix commutation relations, e.g.,

9"’ py = p*
YuYv + Ww¥u = Zguvl
where u, v are now formal indices corresponding to non-integer or complex-dimensional spaces. The
technical details of the dimensional regularization may be found, e.g., in Itzykson and Zuber (1980) and
Faddeev and Slavnov (1980). We note only that the dimensional regularization, at least inits simple form,

is not applicable to theories in which the matrix ys isinvolved. Indeed, the genuine definition of the y5
matrix,

(3.2.192)

def .
vs = lyoy1y2ys (3.2.193)

is heavily based on the concrete value (four) of the spacetime dimension. It can easily be generalized to
any even integer dimension, but thereis no way for a consistent generalization to non-integer dimensions.
Thisfact may cause the so-called quantumanomalies, i.e. theviolation of classical symmetriesat quantum
level; we shall consider this phenomenon in the path-integral formalism in section 3.3.4.

To obtain an idea about dimensional regularization, let us consider the integral

1
2y d
P = /d “ (k2 —m2)[(k — p)2 — m2] (3.2.194)

which comes from the purely scalar field theory (cf diagram (b) in figure 3.3, page 27). Thisintegra is
divergent for d = 4 and convergent for d < 4. Let uscalculateit assuming that d < 4.
Using the formula (Feynman parametrization)

1 1 1
/ dx ——— (3.2.195)
0

b~ Jo Fax+ba—xP
we can rewrite (3.2.194) in the form (after the change of variablesk — p(1 — x) — k):
2 ! d 1
I(p°) = /0 dx/d k K2+ pPx(1— %) - 22" (3.2.196)

Rotating the integration contour by 90° (the so-called Wick rotation) and again changing the variable
ko — iko, we obtain the integral over the d-dimensional Euclidean space:

1 1
2y d
I (p°) = |/0 dx/d k K21 p2x(1— %) + M2 (3.2.197)
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If d isinteger, we can use, for the calculation, the known result for the standard integral

1 _y (e —d/2)

where I'(+) is the gamma-function. For an arbitrary d, we just postulate formula (3.2.198) and, using it,
we obtain the expression for the regularized integral

1
1 (p?) = in%/?r (2 - g) / dx [m? — p?x(1— x)]9/?72. (3.2.199)
0

The integral over the x-variable is obviously convergent but the I'-factor leads to a divergence at d = 4,
since the function I'(2 — d/2) has a pole at this point. More complicated divergent integrals can be
regularized and cal culated aong the same line.

An important property of dimensional regularization is that it does not violate gauge invariance and
since all properties of Lorentz-covariant tensors (except the ys-matrix) are straightforwardly generalized
toan arbitrary dimensiond, any expression in the dimensional regularization hasformally arelativistically
covariant form.

< Renormalization (R-operation)

Removing the regularization, i.e. setting d = 4 in (3.2.199), gives rise to a pole. This corresponds to
the divergence of the initial integral over the four-dimensional space. The expansion of the regularized
integral (3.2.199) in the Laurent series with respect to d in the vicinity of the pointd/2 = 2 yields

|<p2>=d/2_2

1
- inZ/ dx Infm? — p?x(1— x)] + C + O(d/2 — 2) (3.2.200)
0

where C is afinite constant. Then let us expand (3.2.200) in the Taylor series with respect to p? at some
point p? = A2 (referred to asarenormalization point). Subtracting | (p?)|2_;2 from (3.2.200), we arrive
at an expression which does not contain divergences:

m2 — p2x(1— x)

T e .2.201
m2 — A2x(1 — X) (3.2.201)

1
IR(P?) = —inZ/ dx In
0

Thisis the renormalized expression for the integral (3.2.194). The choice of the renormalization point is
arbitrary. By taking another renormalization point, we obtain an expression which differs from (3.2.201)
by a finite polynomial in p2. In realistic physical models, this arbitrariness is fixed by the requirement
that the particlesin the theory possess experimentally known charges and masses.

In asimilar way, the renormalization of other integrals can be performed. But for more complicated
integrals, including integrations over many momenta, the simple renormalization method discussed so far
isinsufficient. In such cases, the R-operation developed by Bogoliubov, Parasiuk, Hepp and Zimmermann
should be applied (see, e.g., Bogoliubov and Shirkov (1959) and Hepp (1969)).

The renormalization procedure can also be formulated in a different language. The point is that
the replacement of divergent integrals by the renormalized ones is equivalent to the inclusion of some
additional termsin theinitial Lagrangian. These are called counter-terms. Therefore, the renormalization
can be carried out by introducing counter-terms into Lagrangians (see, e.g., Bogoliubov and Shirkov
(1959) and Itzykson and Zuber (1980)).
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<> Generalized War d—-Takahashi identities

As already mentioned, the renormalization of gauge theories brings about additional problems associated
with the requirement that the gauge invariance of the theory should not be violated. In this case, the
renormalization is also carried out by means of the R-operation. To prove that the gauge invariance is
not violated by that procedure, it is convenient to utilize the generalized Ward—Takahashi identities also
called the Savnov-Taylor-Ward—Takahashi identities. The derivation of these identities in the case of
non-Abelian Yang-Millstheory is heavily based on the path-integral representation for the Green function
generating functional and we shall consider this derivation in some more detail.

Let us discuss as an example the pure Yang—Mills theory (i.e. without matter fields). We start from
the generating functional Z[J?] in the a-gauge written in the form

dim®
2137 = / [T PAS(x) Da®(x) (0" AS, — a% Au(AS)
a=1
x exp{iS{M - i/d“x [i(Ab)2+ JbﬂA,E“ (3.2.202)
2u

where Sy isthe gauge-invariant Yang—Mills action (3.2.12).

The general idea of deriving the Ward—Takahashi-type identities was discussed in section 3.1.5.
Practically, we can proceed as follows. Let us perform the gauge transformation A, — A’ so that
the Yang—Millsfield now satisfies the condition

8“(A“)Z(x) —a®x) —b®x)=0. (3.2.203)

The transition to this new gauge is fulfilled via the standard Faddeev—Popov trick: we introduce the
gauge-invariant functional A (a,,), defined by

AulA] / Du(x) 8[3" A}, —a—b] = 1. (3.2.204)
The substitution of (3.2.204) into (3.2.202) and the change of variablesA — A", u — u~1yield:
Z[J¥] = /DAM(X) Da(x) Du(x) Aa(AZ)Za(Ai)S(E)“AM —a)§(0*A, —a—Dh)
X exp {iS{M —i / d*x % Tr [%az + J“Al‘j“ ) (3.2.205)

At this point, we have essentially used the gauge invariance of the classica Yang—Mills action Sy . To
perform the integration over u(x) and a, we make use of the fact that the term %Tr J“A;‘L in (3.2.205)

can be represented, due to the presence of the two §-functionals, as % TrJ*AY% where ug(x; A, b)isthe
solution of the following set of equations:

M (AD)E (x) —a%(x) =0
(3.2.206)
oM AZ(x) —a%(x) —bx) =0.
For infinitesimally small functions b?(x), the first equation in (3.2.206) can be written as follows:

A (x) — a%(x) + MPep(x) = 0 (3.2.207)
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where gp(X) denotes the parameters of the infinitesimal gauge transformation ug and
M3 = 3 D3P = 9" (8apd;, + GfancAl). (3.2.208)
The obvious solution of (3.2.206) in this case reads as
£3(x) = (M~ 1)2pC, (3.2.209)
Thus, theterm 3 Tr J*A} takes the form
I (AU0)2 (x) = I¥(x) A2 (X) + I (X) D3P (X)

= J¥(X)AZ(x) + J¥(x) D3P / dty (M~HP(x, y)bS(y)  (3.2.210)
and the whole generating functional (3.2.205) now becomes
Z[3% = /HDAu(x) det lVIexp{iSm —i / d*x [%(BMA‘Z — b2 + I3 (x) A2 (x)
Iz
+i / d*x d*y 33 (x) D2 (M~1)Pe(x, y)bc(y)“ (3.2.211)

(recall that on the surface defined by the gauige condition, there exists the equality A, (A) = det M).
Let us now differentiate both sides of (3.2.211) with respect to b%(x). Since the initial functional
(3.2.202), coinciding with (3.2.211), does not depend on b?(x), we have

§Z[J]
sba(y)

= / [[PA.0) detm [EauAi(y)+ / dy’ J°“(y))DEE(M™H Py, y)}
b3=0 1 o

X exp {iS{M —i / d*x [%(a“AZ)Z + Ja“(x)AZ(x)} } =0. (3.2.212)

This system of identities can be rewritten in terms of functional derivatives of the generating functional
Z[J] with respect to the currents

1 1 § 1 s 15
—oH| = 4y 3P befy, = —1yca L1 _
{aa [i 8Jaﬂ(x)} +/d yJ“(y)[D“( i aJﬁ'(y)>(M : (y’x’ i 5JS>]}Z[J]_O'

(3.2.213)
In asimilar way, the generalized Ward-Takahashi identities can be found for other cases, e.g., for
gauge fields interacting with (spinor or scalar) fields of matter.
The generalized Ward—Takahashi identities stem from the physical equivalence of various gauges.
As can be seen from (3.2.213), they lead to certain relations between the Green functions.

<& BRST symmetry of the Yang-Mills effective action and another way of deriving the generalized
War d-Takahashi identity

We dtill consider the case of pure Yang—Mills fields (without matter fields). This time we shall use the
generating functional with the Faddeev—Popov ghost fields:

Z[J] = /DAg(x) DE?(x) Dc3(x) exp {i / dx [Leff + JH AL 4 C%n + r‘;aca]} (3.2.214)
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with
1 1
Lot = _Z(F;‘;‘V)Z - z(a“Af‘L)2 — 91€%9,,C* — gfapad"C* A Y. (3.2.215)

It can be directly proven that the effective Lagrangian Lei is invariant under the following combined
transformations of the gauge fields Aﬁ(x) and the ghost fields c®(x) which are called Becchi—Rouet—
Sora—Tyutin (BRST) transformations (Becchi et al 1975, 1976, Tyutin 1975):

A%(X) — A2(X) + (D,C(X))¢

c®(x) —> c(X) — 2 fabaC?(x)cd(x)¢ (3.2.216)
cd(x) — () — E(a“AZ(X))Q
o

The parameter ¢ does not depend on the coordinates, i.e. these are global transformations. In addition, the
parameter ¢ cannot be an ordinary number because the Yang—Millsfields Az obey commutation relations
(thevariables AZ inthe path integral commute), while the ghost fields¢®, ¢ are anticommuting variables.
Thus, for consistency, the parameter ¢ must be Grassmannian and satisfy the relations:

(=0 [, All=0 ({¢.c)=0 (=0

Making the change of variables (3.2.216) in the path integral (3.2.214), we arrive at an expression for the
generating functional which contains the parameter ¢. Since the initial path integral does not contain ¢
and since an integral does not depend on the choice of integration variables (note that the Jacobian of the
substitution (3.2.216) is equal to unity), the differentiation of the resulting path integral over ¢ givesthe
identity

1 1
/ DAZ (x) DE(X) DC?(X) [ / dy J¥(y)Duci(y) — Z0" AL (yIn*(y) — Sii® fabdcb<y)cd(y>}

X exp {i / dX [Lefr + J2AZ + 8% + ﬁaca]} =0. (3.2.217)

Thisisjust another form of the generalized Ward—Takahashi identity (3.2.213) (problem 3.2.6, page 100).
Likewise, Ward—Takahashi identities of the type (3.2.217) for more general models than pure gauge
fields can be obtained.
Two remarks are in order:

e The role of the Ward-Takahashi identities in the renormalization of Yang-Mills theories can
be briefly described as follows. The general renormalization procedure (R-operation) prescribes
counter-terms (subtractions) which potentially may violate the gauge invariance of the theory.
However, if the gauge model under consideration allows some gauge-invariant regularization, the
generalized Ward—Takahashi identities establish certain relations between the counter-terms leaving
only their gauge-invariant combinations. After this, we can remove the regularization and due to the
explicit gaugeinvariance at each step of the renormalization procedure, the resulting quantum theory
without divergences also provesto be gauge invariant.

e If amode does not allow gauge-invariant regularizations (e.g., theories containing ys-matrices),
there is no guarantee that the ‘naive’ Ward-Takahashi identity (without taking into account field
theoretical divergences) is still valid for the regularized theory. Instead, we obtain what is called the
anomal ous Ward—Takahashi identity. Correspondingly, the renormalized theory may lose the gauge
invariance of its classical counterpart. In this case the theory is said to have quantumanomalies. We
shall consider this situation in somewhat more detail in section 3.3.4.

Further applicationsand detailed discussion of the BRST symmetry may be found in Nakanishi and Ojima
(1990).
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3.2.8 Spontaneous symmetry-breaking of gaugeinvarianceand a brief look at the standard model
of particleinteractions

In order to illustrate the actual physical application of the quantum gauge-field theory which, in turn, is
heavily based on the path-integral formalism, we shall briefly discuss the so-called standard model of
electroweak and strong interactions.

Recall that, in spite of the apparent diversity of interactions between physical objects in nature
(depending on the interactions of the elementary particles forming these objects), only four types of
fundamental interaction of elementary particles (the interactions are enumerated in the order of their
increasing strength) exist:

(i) gravitational interactions;

(ii) weak interactions (responsible for most decays and many transformations of elementary particles);

(iii) electromagnetic interactions;

(iv) strong interactions (providing, in particular, the bounds of particles in atomic nuclei, so that
sometimes they are also called nuclear interactions).

Up to the beginning of the 1970s, quantum electrodynamics was the only successful example
of a physical application of gauge-field theories. However, by that time experimental study of the
weak interactions had revealed a considerable similarity between weak and el ectromagnetic interactions.
Among other things, there was strong evidence that weak interactions are mediated by vector particles
(similar to the photon) and are characterized by a single coupling constant (the so-called universality of the
weak interactions). All these features acquire natural explanationsif we assume that both el ectromagnetic
and weak interactions are described by a gauge-invariant theory, the Yang-Mills field being the mediator
of the interactions (Schwinger 1957, Glashow 1961). However, along with the similarity between the two
types of fundamental interaction, there are essential differences. The most obvious oneisthat, in contrast
to the long-range electromagnetic interaction (which corresponds to massless intermediate particles, i.e.
photons), the weak interaction has a very short interaction radius and, hence, must be based on massive
intermediate particles. For along time, this and some other differences prevented the construction of
a unified field theoretical model of weak and electromagnetic interactions. Fortunately, this problem
can be overcome with the help of the so-called Higgs mechanism based, in turn, on the very important
phenomenon of spontaneous symmetry-breaking (Weinberg 1967, Salam 1968). The unified model of
weak and electromagnetic interactions based on the non-Abelian Yang—Millstheory with the gauge group
SU (2) x U (1), together with the spontaneous symmetry-breaking and the Higgs mechanism, is called the
Glashow—Salam-Weinberg model or standard model. A nice property of this model isthat it proved to be
arenormalizable quantum field theory ('t Hooft 1971).

At first sight, the dynamics of strong interactions looks too complicated to be described by some
Lagrangian field theory. The first attempts to construct such a theory were not even in qualitative
agreement with the experimental facts. However, later (inthe early 1970s), experimentson deep inelasting
scattering have shown that at small distances, hadrons (strongly interacting particles) behave as if they
were made of non-interacting pointlike constituents (partonsor quarks). Thisfact hasled to the conjecture
that hadrons are composite objects, the constituents being weakly interacting particles at small distances
and strongly interacting at large distances. This phenomenon has acquired the name asymptotic freedom.
It has been shown (Gross and Wilczek 1973, Politzer 1973) that only the non-Abelian Yang-Mills theory
possesses such a property and provides the desired behaviour of quarks. The resulting physical theory,
based on the gauge group SU (3), is called quantum chromodynamics (QCD).

It is necessary to note that nowadays it is customary to ascribe the name ‘standard model’ to a
combination of the Glashow—Salam—\Weinberg el ectroweak theory and chromodynamics, i.e. to the theory
based on the gauge group SU (3) x SU (2) x U (1) (with the appropriate spontaneous symmetry-breaking).
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Another important remark is that the standard model cannot be considered asatruly unified model for
the three fundamental interactions. The point isthat it is based on anon-simple gauge group and therefore
contains a few independent coupling constants (actually, it contains several dozen free parameters such
as the masses of particles etc). Many advanced attempts to improve this model, based either on simple
gauge groups like, e.g., SU (5) (grand unified theory), or on supersymmetric generalizations of the main
idea, have been made.

In this subsection, we shall consider only the basic idea of the standard model and other unified
theories, namely, spontaneous symmetry-breaking and its implication for the path-integral representation
of generating functionalsin quantum field theories. The reader may find further details about the standard
model, QCD and other unified modelsin ltzykson and Zuber (1980), Okun (1982), Chaichian and Nelipa
(1984), Cheng and Li (1984), West (1986), Bailin and Love (1993), Peskin and Schroeder (1995) and
Weinberg (1996, 2000).

<> The concept of spontaneous symmetry-breaking

First, we shall explain what spontaneous symmetry-breaking is and then discuss a concrete model with
local symmetry-breaking.

Consider a quantum-mechanical system with a Hamiltonian H. The system can be in various energy
states Ey,, determined by the stationary Schrodinger equation

Ayn = Envn.

If there is a single vacuum state corresponding to the minimum eigenvalue Ep, this is called a non-
degenerate vacuum state, otherwise it is called degenerate.

Let acertain transformation group & be given. The vacuum state is invariant under the group & if it
transforms into itself and non-invariant otherwise. In the framework of the local relativistic quantum
field theory, there exists a connection between the invariance of the vacuum state under a group of
transformations and the invariance of the Lagrangian under the same group. Thisis given in the Coleman
theorem, that states:

(i) If the vacuum state is invariant, the Lagrangian must necessarily be invariant, too (the case of exact
symmetry).
(ii) If the vacuum state is non-invariant, the Lagrangian may be either non-invariant or invariant; in both
these cases, the symmetry as awholeis broken:
e inthe case of non-invariance of both the vacuum state and the Lagrangian we speak of explicit
symmetry-breaking;
e if thevacuum stateis non-invariant, whereasthe Lagrangian isinvariant, the symmetry-breaking
is called spontaneous.

It can be shown that the case of spontaneous symmetry-breaking necessarily leads to the occurrence
of zero-mass particles. This statement is known as the Goldstone theorem. Accordingly, the massless
particles are called goldstones.
< A simple model with spontaneous symmetry-breaking of a global symmetry
Consider amodel described by the Lagrangian

L = 0" ")(0up) — M*p* e — $1(p%p)? (3.2.218)

where ¢(x) isacomplex scalar field, A isthe coupling constant (A > 0) and m is the mass of the scalar
particle (m? > 0).
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Figure 3.12. Examples of potentials with non-degenerate (a) and degenerate (b) vacuum states.

This Lagrangian isinvariant under the global group U (1) of the phase transformations

p(x) — ¢'(X) =& Mp(x)  9F(X) — ¢ (X) = 69" (x). (3.2.219)

The conserved energy of the field system is given by the expression

E= fd“‘r [dog™ (t, Nop(t, 1) + dig*(t, Ndip(t, 1) + mMPe*(t, Ne(t, 1) + FA(e*(t, Ne(t, 1))2].
(3.2.220)

In the class of static and trandationally invariant fields (i.e. ¢(x) = constant; we shall consider more
general solutionslater, see section 3.3.3) the energy minimum coincideswith the minimum of the function

V(p*, 9) = m*p*p + a(p*p)%. (3.2.221)

Thisminimum s obviously located at the origin of thefield space, ¢* = ¢ = 0, seefigure 3.12(a). Hence,
the vacuum state of the model is non-degenerate and invariant under the transformations (3.2.219). The
Lagrangian (3.2.218) is also invariant under the transformations of the group U (1). The model thus has
exact U (1)-symmetry. In the quantum theory, the vacuum expectation value of the field ¢ (x) is zero:

{019 (x)|0) = (0] (x)|0) = 0. (3.2.222)

Now consider a model described by almost the same Lagrangian but with the opposite sign for the
quadratic term:
Lsss = (0"9")(u9) + MPe*p — 3M(p*9)%. (3.2.223)

The energy of the system in this case takes the form

E= /d“‘r [Bo@™ (t, Naop(t, 1) + dg™(t, Ndiet, 1) — mPe*t, N, 1) + 2A(@*t, De(t, 1))?]
(3.2.224)
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which, for static and trandlationally invariant fields, reducesto the function (see figure 3.12(b))
V(g*, @) = —mPp*p + 3r(0" ). (3.2.225)

Thus, the energy hasaminimum at ¢*¢ = 2m2/x, that is

2
|@minl = \/;m. (3.2.226)

The system has an infinite set of vacuum states, each of them corresponding to a point on the circle of
radius R = +/2m/+/ on the complex plane ¢ (see figure 3.12(b)). Thus, the vacuum states are infinitely
degenerate. Let us make afew important remarks:

(i) the transformations (3.2.219) convert a certain vacuum state (a point of the circle) into any other
state; this means that an arbitrarily chosen vacuum state is not invariant under the transformations
(3.2.219);

(if) theLagrangian Lssg in (3.2.223) isinvariant under the transformations(3.2.219) and

(iii) in order to construct a quantum theory, a definite vacuum state, i.e. a definite point on the circle
(3.2.226) has to be chosen; we should bear in mind that different degenerate vacuum states are not
related to each other and no superposition can be formed from them (there is no such physical state).
Thisfact is sometimes expressed by the words: ‘to different vacuum states there correspond different
worlds'.

Thus, the system described by the Lagrangian Lssg has a spontaneously broken U (1)-symmetry.

For the quantization of a theory with spontaneously broken symmetry it is convenient to shift the
field variables. Choosing the vacuum state corresponding to the intercept of the circumference with the
real axisin the plane ¢, we introduce the new field variables g1, g2 viatherelation

P(x) = %2 <2—\/r; +o1(X) + i<pz(x)> (3.2.227)

so that the @12 describe fluctuations around the chosen vacuum state. It is clear that the vacuum
expectations of the fields ¢1,2(x) are zero, while that of the field Re¢(x) is non-zero: (0] Re¢(x)|0) =
V2m/+/x # 0. Substituting (3.2.227) into (3.2.223) we find

1 1 A mv/a
Lssp = 5@Oup1)” — mief + 5 (0u02)? — T2 + 20003 +03) - =~ Wi +eden  (32228)

wherem; = +/2m isthe mass of the particle p1(x). This Lagrangian does not contain aterm proportional
to <p§(x), i.e. the scalar particle described by the quantum field ¢2(x) is massless; it emerged as aresult of
the spontaneous symmetry-breaking and is a goldstone.

<& Spontaneous breaking of local symmetry
Let us now modify the Lagrangian Lssg by introducing the Abelian gauge fields A, (x), so that it is
invariant with respect to the local U (1)-transformations:

L = —2F2 + (0" — igA"9") (00 +igALp) + MP* g — A(p* ). (3.2.229)
This Lagrangian is invariant under the transformations

P(X) — ¢'(x) = €Ny (x)

9*(X) — ¢"*(x) = €*®p*(x) (3.2.230)
Au(x) — A;L(x) = AL (X) + due(X).
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Thecircle of radius R, asin figure 3.12(b), again corresponds to the vacuum states (in the vacuum states,
A, = 0). Making the shift (3.2.227), we now obtain

29°m?
4 Hv A

1 1 2m

where Lit istheinteraction Lagrangian for thefields A, ¢1, ¢2:

4

2g°m , 9° 2, 2, 2, M
Lint = gA" (910492 — 920u91) + TAﬂwl t S AT+ —
— 15001 + 93 + 20705) — 3MWA(9] + 9D)g1. (3.2.232)

The free Lagrangian in (3.2.231) is non-diagonal because of the term (2mg/+/A) A“3,,¢2. To determine
the mass term, we should diagonalize the free Lagrangian in (3.2.231). This is not difficult to do, but
there is an even easier way: we may use the freedom in choosing the gauge condition to fix the gauge
transformations (3.2.230) and setting

@2(x) = 0. (3.2.233)

Thisgauge condition is called the unitary gauge. In this gauge, the spectrum of free particlesin the model
isclearly exhibited: the model contains one vector massivefield A, (x) and one scalar massivefield ¢1(x).
Thus, a remarkable feature of Lagrangian (3.2.231) is that it contains a massive vector particle with the
mass 2gm/~/A. A direct introduction of a term proportional to A* A, in the Lagrangian (3.2.229) is
not alowed because of its non-invariance under the local gauge transformations (3.2.230). In contrast
to this, the mass term in (3.2.231) emerges due to the spontaneous breaking of the invariance, while the
Lagrangian remains invariant under the transformations (3.2.230). The massless scalar field (goldstone),
which certainly appears in models with spontaneously broken global symmetry, disappears here. The
corresponding degree of freedom is ‘eaten’ by the massive vector field (recall that a massless vector
field has two possible polarizations, while a massive vector field has three possible polarizations). This
phenomenon of the transition of a degree of freedom initially attributed to the scalar field into that of a
gauge vector field is called the Higgs mechanism and the surviving physical scalar field ¢1(x) is called
the Higgs boson.

<& A non-Abelian gauge model with spontaneous symmetry-breaking and its path-integral
quantization

The Lagrangians of models with spontaneous breaking of non-Abelian gauge symmetry are constructed
in essentially the same way as in the case of Abelian groups. As an example, let us consider the SU (2)-
invariant gauge theory with the doublet of scalar fields

o= (gj;) 0" = (ol o) (3.2.23)

which are transformed according to the fundamental representation of the group SU (2):
P(X) —> ¢/ (X) = &7 W X/24(x) (3.2.235)
(02 are the Pauli matrices). The gauge-invariant Lagrangian reads as

L= Lym + (D 9)'Dup — A2(pTp — u?)? (3.2.236)
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where .
|
Dup =0up + EgaaAZgo. (3.2.237)

In the same way as in the preceding (Abelian) case, we find that the stable minimum of the potential
energy correspondsto the constant field ¢ satisfying the condition:

olo =2 (3.2.238)

It is easy to see that the variety of the vacuum states forms a three-dimensional sphere S2. The choice of

one vacuum State, ed.,
0
— 3.2.239
0 (M) (3.2.239)

removes the degeneration and corresponds to the admissible gauge condition
p1(X) =0 Img2(x) = 0. (3.2.240)

In this gauge, there exists only one scalar field, Regs. It is convenient to introduce the following shifted
field
o) & V2Regs — ). (3.2.241)

Interms of the field o (x), the Lagrangian (3.2.236) reads as

1 1, 1 1,
;C = — ZFaMVFSV —+ EmlAauA;aL —+ Ea”’O’aMG — Emza
1 1 gm3 g’m3
“migo A AR + ZgPe AR AR — 2258 =244 3.2.242
+ > 100 ot 8g o " 4m16 32m%6 ( )
where
“g

Thus, this model describes three massive vector fields (with the equal masses m;) interacting with one
scaar field o of mass my.
Since the Lagrangian (3.2.236) (or (3.2.242)) is locally invariant, the corresponding equations of
motion contain constraints. To derive the latter explicitly, let us rewrite (3.2.236) in the first-order form:
£ = F30A% + phdop + (dop g — H(F&. AR ¢o. ¢)

g
+ A3 [8k F& — ge®°APFS + IE((pgaago — (pTcragoo)] (3.2.244)

where H (F§, Al, vo, ¢) isthe Hamiltonian of the system the explicit form of which is not important at

the moment (cf problem 3.2.7, page 100) and ¢o(X) o Dog(x). It is seen that the pairs (F§, A}) and
(90, p) are canonically conjugate momentaand coordinates, A3 are Lagrange multipliers and

def .
C? = —F§ — geabcAE Fo + I%((pgcra(p — ¢Tolpo) (3.2.245)

are the sought constraints. The reader isinvited to verify that conditions (3.2.57) and (3.2.59) arefulfilled
for this model (problem 3.2.7) and that gauge condition (3.2.240) satisfies (3.2.56). Thus we can use, for
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this model, the standard Faddeev—Popov method for path-integral quantization which, for the kernel of
the S-matrix, gives

Ks@(k), a(k); t,to) = lim /DFg‘k(x)DAﬁ(x)Dao(x)Da(x)Duo(x)Du(x)

to——o0
1 3
x ]:[a(ua(x» (ml + 590)
i 3
x exp{E/dg’k [;(a}*b(k, nad(k. t) + aP (k. to)aP (k. to))
=

+ (@5 (k, t)as (k, t) + a5 (K, to)as (K, to))} }
t 1 . .
X exp {i / dt/d?’x [E(ngAﬁ — F&AR + 006 — 600)
to
—H (ng, Aﬁ, Vo, U, 00, cr:“. (3.2.246)

Here we have used the more convenient field variables v3(x), related to ¢2(x) through
1_ivl+v2 o —ivd
V2 V2
The asymptotic conditions have the form (cf (3.1.86) and (3.2.118)):

o’ =pn+

¥

arP(k,t) —— arP(k) expfiont}  al(k, to) —— a®(k) exp{—iw1to}

t—o00 t—>—o00
ay(k,t) e ay (k) explimat}  aqs (K, to) = 8 (K exp{—iwato} (3.2.247)

—00 ——00
where w1 = \/k +m?2 and wz = ,/k + m3. The holomorphic variables are introduced in the usual way
(cf (3.2.116)):

APrioy= —— /d3k a(k, ou! (—ke KT +aPk, u! (kKT
P(r, ) (2n)3/2j221 oo @k DUl (—Re™ET - a(k. Ty (e )

3
Fo(r.o) = (Tl)g/z Z/d3k /%(a}“b(k, Db (—ke " —alk, i (e
j=1

where the polarization vectors are defined as follows: u! = G} and U|2 = ﬁlz aretwo arbitrary orthonormal
vectors, also orthogonal to k, while

(3.2.248)

ud = kw1 B = kimy
I = I
[Kmy

= . 3.2.249
IK|wy ( )
The momenta variables enter the Lagrangian (3.2.244) quadratically and can be integrated out (see
problem 3.2.8, page 100), resulting in the explicitly relativisticaly invariant expression for the normal
symbol of the S-matrix, for the model with spontaneously broken local symmetry SU (2):

SAD, @) =9t [ a PAO Do) | [+ %ga)3exp{i / d4x£(x)} (3.2.250)

0 —0in,0out X
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where
1 a a abc pb aC\2 1 2 1 2 2
L= = Z00A] = 0 AL+ g™ AL AD + 5 mlA + = (aﬂa) - 5mzo

gme 5 g'mj o4
4my 32m2

1 1
+ 5Migo A% + 2070 %A% —

2,251
> (32251)

The asymptotic conditions are analogousto those in (3.2.122):

A% &0 = )3/22/ ds"—(a*b("’ dnoul (e ket 4 abac inoul (ke

(3.2.252)

bk i b b b j def ' - def (. [K|
alk:inp=al(k)  aP(kiout)=ak) ul, = (0.u) j=12 = (|E,u§

o(x: §j) = (Zﬂ)g/z / o’k F(a sk de T ag (ki e (3.2.253)
as(k;in) =a,(k)  a;(k;out) = a; (k).

Asusual, the functions a?(k, out), a*°(k, in), a, (k, out), a’ (k, in) are not fixed by boundary conditions.

The quadratic formin (3.2.251) is defined as follows:

3 / d?x (A2 — AD2) (g0 — 09" + g*'md) (A2 — AR, (3.2.254)

The Green function of the operator
(90 — 8,8y + guum?) (3.2.255)

and, hence, the perturbation expansion (Feynman diagram techniques) are defined by the asymptotic
conditions (3.2.252).

However, the perturbation theory in this unitary gauge (3.2.240) is rather cumbersome for the
following reasons:

e the Green function of the operator (3.2.255) is more singular than the functions we have met so far
(eg., Dy (x)) and

e theintegral (3.2.250) containsin its measure the factor [ [, (mz + %90)3 which, when exponentiated,
produces other singularities.

Therefore, for practical calculations, it is better to pass to another gauge, e.g. the «-gauge, with the help
of the standard Faddeev—Popov trick. The result, for the normal symbol of the S-matrix, reads as

. 1
s=m"1 s A Agy. DA (¥) Do (x) DuA(x) det My exp{lfd“x <£(x) + g(aﬂAﬂ)z)}
0 —0in,0ou
e (3.2.256)
where
1 a a abc pAb pC\2 1 272 1 n 1 2 2
L= — Z(a"AM — O AT+ 9eTTA A+ EmlAM + 58 00,0 — 5Mzo
1
+ Eal‘vafiﬂva + mlAiE)“Ua
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1 1 1
+ EgAi(c&“va — v3Hg — gCyPYILC) 4 EmlgaAi + égz(GZAﬁ +v?)

2012
gmz o o0 9TMZ o 50
- = - —= 3.2.257
amy VD) T g Y (3.2.257)
and R
M, f(x) = Of(x) — ga*[A.(x), fF(X)]. (3.2.258)

In this gauge, the spectrum of the system is not explicit (and, hence, the unitarity of the theory is not
obvious), but realization of the renormalization procedure is much easier than in the explicitly unitary
gauge (3.2.240). Thus, due to the equivalence of the S-matrix in al gauges, the model possesses both of
the necessary properties of a physically meaningful theory: unitarity and renormalizability.

<& Unified theories based on gauge theories: the standard model of electroweak and strong
interactions

As we mentioned at the very beginning of this section, the gauge model with spontaneous symmetry-
breaking describes in a unified way the strong, weak and electromagnetic interactions of elementary
particles. As we shall see later (section 3.4), the gravitational interaction is also described by a gauge
theory, though one which is more involved.

To congtruct the Lagrangian for a unified model, the following steps are required:

(i) Choose the gauge group which determines the interaction-mediating fields; the number of gauge
fieldsis equal to the dimension of the adjoint representation of this group.

(if) Choose primary fermionsto underlie the model and the representations of the gauge group in which
the fermions are placed; the lowest representations are usually chosen.

(iii) Introduce an appropriate number of multiplets of scalar fields as well as the interaction terms of
these multiplets with fermions (the Yukawa coupling) to obtain massive particles via spontaneous
symmetry-breaking and the Higgs mechanism.

(iv) Write the corresponding locally gauge-invariant Lagrangian.

(v) Quantize the model in path-integral formalism with the help of the Faddeev—Popov approach; the
spectrum of free particlesisexhibited in the unitary gauge after diagonalization of the free (quadratic)
part of the Lagrangian, while renormalization is carried out in a suitable «-gauge (and after the
introduction of the ghost fields).

The standard model is characterized by the following selections:

(i) Thetotal gauge group is SU(3) x SU(2) x U(1). The SU(3) factor and the corresponding gauge
fields are responsible for the strong interactions of particles, while the SU (2) x U (1) part provides
the weak and electromagnetic interactions.

(if) Matter spinor fields are divided into two parts:

e There are fields describing leptons, i.e. particles which only participate in electroweak
interactions. These are the electronse™, the .~ -leptons, the 7 ~-leptons, the neutrinos ve, v, v;
and their antiparticles. In fact, to fit experimental data, the Lagrangian of the standard model is
constructed out of left-handed and right-handed projections of the fields, the projector operators
L and R being made by means of the Dirac ys-matrix: L = (1+ y5)/2, R= (1 — y5)/2. Left-
(right-) handed fields are obtained from an initial spinor field ¢ asfollows: | = %(1 + o)y,
YR = %(1 — y5)¢¥. The standard model contains three left-handed lepton SU (2)-doublets

(?) <%> (%) (3.2.259)
€L m L L
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and three right-handed lepton SU (2)-singlets
ex MR R - (3.2.260)

All the lepton fields are singlets with respect to the SU (3) gauge group; thisreflects the fact that
leptons do not participate in strong interactions.

e The quark fields constitute hadrons, i.e. strongly interacting particles. Correspondingly, all
quarks have non-trivial transformation properties with respect to SU(3), namely they are
transformed according to the fundamental three-dimensional representation of SU (3). Theindex
labelling the fields in the SU (3)-triplets has acquired the name ‘ color’. This explains the name
of the SU (3) gauge theory of the quark interactions. quantum chromodynamics (QCD). (In
the currently accepted terminology, QCD is part of the standard model.) Besides the strong
interactions, the quarks also participate in electroweak interactions. Therefore, they have non-
trivial transformation properties with respect to the SU (2) x U (1) part of the standard-model
gaugegroup. Again, asfor theleptons, there are three |l eft-handed SU (2)-doubletsand all quark
fields have right-handed parts, giving atotal of six right-handed singlets.

(iii) Thetotal gauge group SU (3) x SU(2) x U (1) of the standard model is spontaneously broken down
to SU(3) x U(1). Thisis achieved viatheintroduction of a SU (2)-doublet of scalar complex fields
(Higgsfields), smilarly to the model we previously considered in this section.

(iv) The gauge-invariant Lagrangian is constructed by the usual rules, with the help of the covariant
derivatives D, ; the potential energy of the Higgs fields has degenerate minima (as in the previous
model), providing the spontaneous symmetry-breaking. This, in turn, gives masses to three gauge
bosons and to fermions (excluding neutrinos). The fermions acquire masses due to the Yukawa
couplingswith the scalar fields.

(v) The path-integral quantization of the standard model and the development of the perturbation
theory are carried out as we have described in this section for general Yang—Mills theories. Note
that the massless photon (electromagnetic) field appears as a linear combination of the gauge
boson corresponding to the factor U (1) in SU(3) x SU(2) x U (1) and one of the gauge bosons
corresponding to SU (2). Another (linearly independent) combination of these bosons becomes
massive and responsible (together with two other massive SU(2) gauge bosons) for the weak
interactions. One more peculiarity of the standard model is that its Lagrangian essentially contains
y5-matrices, because the spinor fields enter the Lagrangian viatheir |eft- and right-handed projection.
This fact might potentially cause quantum anomalies (see section 3.3.4) and the theory may prove
to be non-renormalizable. However, the whole structure of the spinor multiplets (both leptons and
quarks) is such that the anomalies in different sectors of the model cancel each other out and the
complete theory is well defined, non-anomal ous and renormalizable.

At present, there is no single experimental result which contradicts the standard model. Moreover,
amost al the ingredients of the standard model have experimental confirmation. In particular, all the
particles, except the Higgs particle, have been successfully detected. The Higgs particle is expected to be
detected in the near future.

Of course, our description of the standard model is very far from being complete. We shall consider
some more aspects of this model (or the non-perturbative properties of the Yang—Millstheory, in general)
in the next section. The reader may find more details about the standard model in, e.g., Itzykson and
Zuber (1980), Okun (1982), Chaichian and Nelipa (1984), Cheng and Li (1984), West (1986), Peskin and
Schroeder (1995) and Weinberg (1996).
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3.29 Problems

Problem 3.2.1. Show the equivalence of a classical system with some Hamiltonian H (p, q) plus first-
class constraints (cf (3.2.57) and (3.2.59)), after imposing gauge conditions (cf (3.2.59)) which satisfy
(3.2.60), and the reduced physical subsystem with the Hamiltonian defined asin (3.2.65).

Hint. The equations of motion for theinitial system are

. 9H da
+—+2—=0,
P aqa aqa
. 0H dda
—— 2= =0 3.2.261
an IpA IpA ( )

¢a=0 A=1....na=1...r.

A solution of these equations containsthe arbitrary functions A2(t) (the Lagrange multipliers). The gauge
conditions x5 = O alow usto express A5(t) through the canonical variables. Let us choose the canonical
variables according to (3.2.62) and (3.2.64). Then, equations ¢ = 0 together with (3.2.261) give

JH ad
O 309 g ab=1....r (3.2.262)
9Pa 9Pa
The equations of motion for the physical coordinatesin (3.2.261) have the form
~ oH d¢a
= —_ a8 3.2.263
4 =35 op ( )

On the other hand, if we start from the physical Hamiltonian defined by (3.2.65), the equation of motion

for the same coordinatesis
& 8th _ oH + oH 8pa

T OB 9B padpi
Theright-hand sides of (3.2.263) and (3.2.264) are equal to each other if
d¢a oH 9pa
AT =T—7=-
api pa i
Using (3.2.262), this condition can be rewritten as
ad 0¢pa 0 d
ra (@ + ﬁ@) =Aa==¢a =0.
P 9P IPi dpi
The latter form shows that this condition holds automatically due to the constraints ¢4 = 0. Thus the

physical coordinates have the same equations of motion both in theinitial and in the reduced system. The
momenta are considered quite similarly and with the same result which provesthe required statement.

(3.2.264)

Problem 3.2.2. Calculate path integral (3.2.124) which defines the free propagator of the Yang-Millsfield
in the Coulomb gauge and prove that the latter has the form (3.2.125).

Hint. The extremality equations for the Gaussian integral (3.2.124) read as

V(AR — A + J2+ A2 =0
8" (8, A% — 3pAZ) + J2 = 0
HKAE =0
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or, equivalently,

OA2 — (A2 + 808kA8) + Jf =0
8k8kA8 — JSI =0
E)kA'ﬁ1 =0.

The latter equation shows that the longitudinal component (in the three-dimensional sense) of the Yang—
Millsfield vanishes at the extremal field. Thus we can choose the source field also to be transversal:

8KJI? =0.

As aresult, this system has a unique solution for fields satisfying the boundary conditions (3.2.121) and
(3.2.122) imposed on Al :

AP (x) = / dy D&"(x — y) I2(y),
where DZ" (x — y) is the Coulomb propagator (3.2.126).
Problem 3.2.3. Calculate the integral (3.2.132) in the vicinity of g(x) = 1 (i.e. verify formula(3.2.134)).
Hint. Use the basis of eigenfunctions o (X) of the operator I\WC (A)
Mc(A)an (X) = Anan(X)
and the 8-function property: §(Aa) = [A 718 (a).

Problem 3.2.4. Derivethe constraintsand Hamiltonian equationsof motion for the gaugefieldsinteracting
with a matter spinor field according to the Lagrangian

1 oo -
L= 857 Tr(Fu F™) + iy y" Dy — myyr (3.2.265)
D,=0,+ itaAZ

wheret;"j1 arethe generators of the gauge group in the appropriate representation. Show that the constraints
arefirst class and that they generate the gauge transformations of the fields.

Hint. The constraints have the form
C3(x) = F& — FACAPFS +ivyotiy. (3.2.266)
A straightforward cal culation of the Poisson brackets gives
{00, CP(y)}y = 2% (x — y)C°(0)
so that these are indeed first-class constraints and the Poisson bracket relations
{CR(X). AR(Y)} = 8% ad(x — y) — TECALS(X — y)

{CEX), Y ()} = Ay (X)8(X — y)
{C2X), (V) = — 2P (X)8(X — )

exactly correspond to the infinitesimal gauge transformations of the fields entering the Lagrangian.

Problem 3.2.5. Draw the Feynman diagrams and write the corresponding amplitude for the electron—
€lectron scattering process: €~ (p1) + €7 (p2) — €7 (p1) + €~ (p2).
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p1 p3 P1 Pa
Ki = p3— p1 Ki=psa— p1
p2 P4 P2 p2

Figure 3.13. Feynman diagrams for the el ectron—electron scattering process.

Hint. The diagrams are depicted in figure 3.13. The corresponding amplitude has the form

_ L[ _ 1 B
{Pa. pa; OUL| py, P2; iN) = (—I)Zez[vf,“(ps)mv# >(p1)mvf,“(p4mv§ '(p2)
1
—ﬁf,*)(p4)mvr(_)(p1)mﬁf/+)(ps)mvr(_)(pz)] (3.2.267)

Here the Dirac spinors vr(’)( p) and ﬁﬁ“( p) represent the initial and final electron states, respectively.

Problem 3.2.6. Show that the generalized Ward—Takahashi identity (3.2.217) with ghost fields and ghost
sources can be reduced to the Ward—Takahashi identity in the form (3.2.213), derived without the use of
the BRST transformations.

Hint. Differentiate (3.2.217) with respect to #2 and n?, set 72 = 2 = 0 and subsequently integrate over
c? and ¢?. Theresult exactly coincides with (3.2.213).

Problem 3.2.7. Verify that constraints (3.2.245) satisfy conditions (3.2.57) and (3.2.59) so that they are
first-class constraints. Show also that gauge (3.2.240) is admissible.

Hint. Derive the explicit form of the Hamiltonian in (3.2.244) and, using the canonical Poisson brackets
for conjugate variables (F§ , AY) and (¢o, ¢), verify the required equalities.

To prove the admissibility of the gauge condition (3.2.240), show that the matrix of the Poisson
brackets is non-degenerate (in the framework of perturbation theory). More precisely, show that the
brackets have the form

{C3x), vP(y)} = (M + 290 (x))8%Ps(x —y) + - -- (3.2.268)
where
vi=1Ime1/vV2  v¥P=Regi/vV2  vd=—Imgy/V2
and the dots denote terms vanishing when v = 0. Theright-hand side of (3.2.268) is obviously invertible

if |go| < my.

Problem 3.2.8. With the help of integration over momentum variables convert the phase-space path
integral (3.2.246) for the Smatrix of the model with spontaneous symmetry-breaking into the
configuration path integral (3.2.250), exhibiting explicit relativistic invariance.
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Hint. For the integration over vg we should make the shift of variables:
vo —> vg — M A
while the integration over F§ is performed after the shift:

F& — F& + d0A% — AL,

3.3 Non-perturbative methods for the analysis of quantum field models in the
path-integral approach

Many phenomena in quantum systems, including field theoretical systems, cannot be described in the
framework of the perturbation theory which we have discussed in the preceding sections of this chapter.
Thisis especialy important in the case of the strong coupling regime of the theory when the perturbative
expansion in powers of the coupling constant is absolutely unreliable. For example, this is true for
guantum chromodynamics at relatively large distances. That is why the quantitative description of quark
dynamics, in particular the explanation of quark confinement (absence of free quarks) is an extremely
complicated problem. But even in the weak coupling regime (small coupling constants) there are many
phenomena, e.g. the existence of solitons and instantons, which cannot be described by perturbation theory
(because the appropriate quantities describing these phenomenaare non-anal ytic functions of the coupling
constants). Sometimes, straightforward perturbation theory calculations lead to meaningless results and
some non-trivial rearrangement and partial summation of the perturbation expansion is required (for
instance, in the case of the so-called infrared catastrophe).

Thus, the problem of developing non-perturbative methods of analysis and calculation in quantum
field theory is extremely important. The path-integral formalism has proved to be very useful for this
aim. In this section, we shall consider the most powerful and well-developed non-perturbative path-
integral methods for quantum field theories in continuous spacetime. The discussion of such methodsin
discretized space and time (i.e. for quantum field theories on lattices) pertainsto chapter 4.

The physical problem which we shall discussin thelast part of this section (section 3.3.5) is somehow
outside the main topic of this chapter. While the main subject of the current chapter is relativistically
invariant quantum field theory (with applications to the theory of elementary particles and fundamental
interactions), section 3.3.5 is devoted to non-perturbative path-integral methodsin a non-relativistic field
theory. Physically, this field theory describes an electron moving in a crystal and interacting with the
vibrations of the crystal lattice (the so-called polaron problem). We shall see that, though the physical
situation in this case is quite different from that for elementary particle models, the essence of the field
theoretical and path-integral methods remains the same.

It isworth mentioning that, in fact, we have already dealt with non-perturbative applications of path-
integral methods in quantum field theory: as we learned in section 3.1.5, the path-integral formalism is
very convenient for deriving the Schwinger—Dyson equations, which contain complete information about
the field model under consideration. Then we may try to solve these equations by some non-perturbative
(though, of course, in most cases till approximate) method.

3.3.1 Rearrangements and partial summations of perturbation expansions: the 1/N-expansion
and separ ateintegration over high and low frequency modes

If standard perturbation theory cannot be applied to the calculation of some physical characteristicsin a
field theory (for example, because the corresponding coupling constant is not small), we may look for
new and unorthodox parameters which could serve to define a new perturbation expansion. An example
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of such amodification, which consistsin employing a series expansion with respect to the parameter 1/N
(N is the number of field components entering the Lagrangian of a model; it is supposed that N > 1),
instead of the usual coupling constant, is referred to as the 1/ N-expansion.

<> The 1/N-expansion

We shall illustrate the basics of the 1/N-expansion technique by considering, as an example, the four-
dimensional ¢*-interaction model which isinvariant under the (global) O(N) group. Let the set of scalar
fields p2(x) be transformed according to the fundamental representation of the O(N) group, so that the
scalar field forms amultiplet 2 with N components:a=1,2, ..., N.

The Lagrangian of such amodel can be written as

L= %3“<pa3wa — %mzwawa — %%(wawa)z- (33.1)

Here we have explicitly introduced the parameter 1/N redefining the usual ¢*-coupling constant A as
A/N. Physically, thisis an non-essential redefinition (especially as the coupling constant is subjected to
renormalization). But thistrick allows usto separate diagrams of different ordersin 1/N in an easier way.
For example, to separate the diagrams of zero order in this parameter among all the diagrams of the usual
perturbation theory, we may just put N — oo (i.e. 1/N = 0). If we did not modify the coupling constant,
parts of the diagrams would be proportional to positive powers of N and the N — oo limit would be
meaningless.

Aswill be seen, it is convenient to pass to another Lagrangian for the same system:

1N 1 2
L=L+ 27 (cr — Eﬁ(pa(pa) (332
1 1N
= 5(paK(a)q)a + 5702 (3.3.3)

where o (X) isan auxiliary one-component field and
K(o) = —(0"9, + m? + o).

The additional term in (3.3.2) does not change the dynamics of the system. In fact, the change of
variableso — o (A/N)p2¢?, 9@ — ¢?, in the path integral corresponding to the Lagrangian (3.3.3),
yields

/Da(x) Dgoa(x)exp{i/d“xﬁ} = /Da(x) eXp{i/d4XO'2(X)}D(pa(X) exp{i/d“xﬁ/}.
(3.34)
The integration over o (X) only changes the normalization constant of the generating functional Z[J]
for the Green functions and, consequently, the Lagrangians £ and £’ describe systems with the same
dynamics.
With the use of (3.3.3), the expression for the generating functional Z[J] for the Green functions of
the fields ¢2 takes the form

Z[3 =t / Do (X) Dp?(X) exp{i / d’x BwaK<a)goa+ %%o% J%x)wa(x)“ (335)

where J2 are the auxiliary external currents associated with the fields ¢2. The Gaussian integration over
thefields ¢2 gives

Z[J] =/Da(x) eXp{iN/d4X£eff(cr)} (3.3.6)
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where
1] 1 4 2 1 4 4 a -1 a
Lei(0) = E[|TrInK(cr)+x/d X o (X)_N/d xd*'y I XK ™(X, y)Jd (y)] (3.3.7)

Itisseen that theintegral over the multiplet 92 isreduced to an integral over asingle scalar function o (x),
which wasthe actual goal when introducing thefield o (x). The main achievement of such arepresentation
of the generating functional is that the parameter N provesto be explicitly extracted as the overall factor
in front of the exponent in the path integral (note that the last term in the effective Lagrangian (3.3.7)
contains, together with the factor 1/N, the summation over N terms and, hence, it is also of zero order in
1/N). Since we assume that N is alarge quantity (N > 1), we can use for the calculation of (3.3.6) the
stationary-phase method (see section 2.2.3).
First, we haveto find the stationary point, i.e. the solution og of the equation

L2 / d*X Ler(0) =0 (3.3.8)
So

and then we expand the action around this stationary value. Note that the stationary point og dependson
the currents J2: op = 0p(J). The quadratic approximation gives

Z@arg i) = expliNSloo(I)1} / Do (X) exp{iN f d*x %ﬁ’e’ﬁ(oo)az(x) + %j (x)a(x)}
= [det L4 (00)] % expliN [o0( )]} exp{—'i Nj (O[L%(00)] 7] (x)} (339

where j (x) isthe auxiliary current corresponding to thefield o (x) and

32Lest (o)
9o

fo (00) =

o=00

Expression (3.3.9) givesthe leading contributionin 1/N to the generating functional. In the standard way,
we can take into account all higher ordersin1/N (i.e. higher orders of the expansion around the stationary
point op):

Z[3, j1 = [det L (00)] Y2 exp{iN S [o0(I)]}
1 "L et
XeXp{INZH[ o

Functional differentiation of Z[J, j] with respect to the currents J and j gives the corresponding Green
functions. In particular, according to (3.3.10), for the propagator D(x, y) of the field o (x) in the first
orderin1/N, we have

1 4n T
Uzaj I_”m} exp {—5 Nj (X)[Lgg(o0)] 7] (X)} . (3.3.10)

= —iN7 Ll (o017 (3.3.11)

. 82213, j
DN, y) =~ U o
=]=

88 (Y)

However, the effective Lagrangian Let containsthe term i TrIn K (o) with an implicit dependence on the
field o (x). In order to make this dependence explicit, let us present thisterm in the following way:

TrinK (o) = Trin[—(8"9, + m?) — o]
= Trin[—(3"8, +m?)] + Trin[1+ Dc(X, y)o (Y)]. (33.12)
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Here Dc(X, Y) is the usua Green function (3.1.93) for a scalar field (i.e. the kernel of the operator
(0,0, + m2)~1: (0,0 + m?)De(X, y) = (X — y)). Note that the field o (x) entering the operator
K (o) isconsidered to be adiagonal operator o (x)3(x — y) and in the form of an integral kernel it actson
an arbitrary function f (x) asfollows

6 f(x) =/dyo(X)5(X—y)f(y) = o (X) f(x).

The operator Dc(X, Y)o (y) is aso understood as an integral kernel (infinite-dimensional matrix with its
elements|abeled by x and y), so that its trace hastheform: | dx Dc(x, X)o (x). Thefirst termin (3.3.12)
gives an inessential constant. The Taylor expansion of the second term gives the explicit dependence of
Lef ONo:

Trin(d + D¢(X, Y)o (Y)) = /dx Dc(X, X)o (X)
-3 / dx dy De(X, Y)o (y) De(Y. X)o (X)
+1 / dx dydz De(X, Y)o (Y)De(Y, 2)o(2)De(z, X)o (X) + - - - . (3.3.13)

In general, the stationary point og is not zero (and depends on the external source J(x)) and the
explicit form of the o -propagator, even in the leading 1/ N-approximation, is rather complicated, being
represented by an infinite number of Feynman diagrams of the ordinary perturbation theory. To illustrate
this, let us assume that op = 0, so that (3.3.13) gives

i
Lllog=0 = A8 (X — y) — 5 Dc(X, Y)De(y, X)

and the o -field propagator in the leading 1/ N-approximation becomes

. A 1 -1
D(l/?\l(x’ y) = [l + 52T, y)} (3.3.14)

N
where

E(Xs y) = DC(X7 y) DC(y7 X)

_ 1 ip(x—y) / 1 1
= (2n)8/dpe e prz_m |

The expansion of (3.3.14) as a power series in the coupling constant A is depicted graphically in
figure 3.14.

Let us consider an arbitrary connected diagram which contains E externa lines, | interna lines
and V vertices corresponding to the field o. According to (3.3.6), each vertex of the diagram involves
the parameter N. Since the propagator is a reciprocal quantity with respect to the quadratic part of
the Lagrangian, to each internal or external line there corresponds a factor 1/N. The diagram is thus
characterized by the quantity NV—'—E. The number of internal lines is equal to the number of momenta
over which the integration is to be carried out. These momenta are, however, not independent, because
the momenta meeting at each of the vertices V are interrelated through a conservation law; besides, one
of the conservation laws (pertaining to the process as a whol€) involves the external momenta so that the
number of independent internal momentaisL =1 — (V —1).
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Figure 3.14. Expansion of the diagram for the propagator of the o -field in the first order in 1/N into an infinite series
corresponding to diagrams of different orders of the usual perturbation theory in the coupling constant .
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Figure 3.15. Diagrams for the process p2p? — ¢3¢ inthefirst order in 1/N.

Taking this into account we find for the power of N:
NV-I-E = N~E-L+L (3.3.15)

In particular, the diagrams containing two external lines (E = 2) and no loops (L = O, the tree
approximation) contribute to the leading order in 1/N.

As an example, the typical diagrams for ¢2¢p? — ¢%p? scattering in the leading order in the
parameter 1/N are depicted in figure 3.15. The filled circle denotes the two-point Green function D(l‘/’f\l
of the o-field and is presented in figure 3.14. It can be seen that an infinite number of the usual Feynman
diagrams with increasing powers of the coupling constant A", n = 1, 2, 3, ..., contribute to the leading-
order contribution in the parameter 1/N (we assume that the Lagrangian is presented in the normal form
so that tadpole diagrams do not appear).

It should be emphasized that the 1/N-expansion technique is based on the possibility of reducing
the integration over the field ¢2(x) in the generating functional to integration over the field o (x). This
allows usto express the generating functional in the form (3.3.6), which contains N in front of the action
as a common factor. Unfortunately, this possibility can only be realized if the Lagrangian comprises
fields which transform according to the fundamental representation of a symmetry group. The method
of 1/N-expansion, as outlined here, cannot be applied directly to the gauge fields of the O(N) groups,
because these transform according to the adjoint rather than the fundamental representation of the O(N)
group (the number of gauge fields of the group O(N) being equal to N(N — 1)/2 and not to N). Other
(topological) methods have been devel oped for the classification of diagramsin gauge theories according
to the powers of 1/N. However, at least in the four-dimensional case, these methods have not produced
impressive results on the non-perturbative structure of the gauge theories. The reader may find further
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details on 1/N-expansion (together with analysis of other models containing fields in the fundamental
representations of the symmetry groups) in Zakrzewski (1989).

<& Separateintegration over lower and higher modes and infrared asymptotics of Green functions

Infrared divergences in quantum field theories appear in the perturbation theory cal culations of transition
amplitudes, due to the integration over aregion of small energies of particles (virtual or real) entering the
process (see Bogoliubov and Shirkov (1959) and Itzykson and Zuber (1980)). An important example of
a theory where such problems exist is quantum electrodynamics (QED). The physical reason for the
infrared divergences in QED is the existence of photons of arbitrarily small energies (since photons
are massess). Some diagrams of the standard perturbation theory, in this case, have (along with the
ultraviolet divergences which we have discussed earlier and which require a renormalization procedure
for their removal), the specific infrared singularity. This means that the expression corresponding to a
given diagram is singular at zero externa momenta (i.e. momenta attributed to the external lines of the
diagram). The origin of infrared singularitiesis quite different from that of ultraviolet ones. The former
are removed not via renormalization but with the help of an appropriate rearrangement of the perturbation
theory. One possible method of such arearrangement is based on the path-integral approach and consists
in successive integration, at first over the higher and then over lower momentum modes of the quantum
fields.

We shall consider the Green function Sémt)(p), that is the total two-point electron Green functionin
QED taking into account the interactions (as distinct from the free-spinor Green function &;; cf (3.1.106)).
In this case, the infrared problem revealsitself as an appearance of a power singularity in &(“’t)( p) at the
mass shell p? = m?, instead of a simple pole. As we have already mentioned, this is explained by the
fact that a physical electron is surrounded by a‘cloud’ of photons of arbitrarily small energy (arbitrarily
large wavelength). The form of this singularity was found for thefirst time by Landau et al (1954) by the
summation of aspecial infinite subset of the usual Feynman diagrams. The path-integral approach allows
us to do thisin amore natural and technically easier way (see Popov (1983) and references therein).

The words ‘ higher’ and ‘lower’ modes mean that we should separate the Fourier modes v/ (k) of the
photon field

AL (X) = / d*k e A, (k) (3.3.16)

into two parts, corresponding to the small and large values of the momentum k. To do this, it is convenient
to pass, first, to the Euclidean version of quantum field theory via the analytic continuation to imaginary
time. Inthis case, we may define the lower modes as {ﬂu(k), k? = Zi:l kﬁ < kg} for some appropriate
Ko and the higher modes as { A, (k), k? = Y% _; k2 > k2}. Thetransition to the physical case of pseudo-
Euclidean metricsis carried out by backward analytic continuation to real time in the final expression for
the Green functions. Note that we now use the Euclidean y-matrices, with the defining relations

YuVv + VW¥u = 20,0 w,v=1234. (3.3.17)

The electron Green function (Euclidean version) is defined in the usual way

S(x, y) = Zoeol . 1, 7] = (0¥ () ¥ (¥)|0)

57(X) 81(Y) im0
=m1 / DA, x) Dl/_/ x") DI//(X/) 5[8“AM ]
x exp{—SQepl AX), ¥ (X), ¥ (X JF (0¥ () (3.3.18)
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where Sgep is given in (3.2.183). The calculation of this Green function can be carried out aong the
following steps:

(i) Integrate over the spinor electron—positron fields v, v using the fact that they enter the exponent in
the path integral (3.3.18) quadratically.

(ii) Calculate the integral over the higher modes of the electromagnetic field using standard perturbation
theory (ask? > k3 for the higher modes, the infrared problems do not appear at this stage).

(iii) Calculate the remaining path integral over the lower modesk? < k2 using the specific approximation
outlined later.

The usual calculation of the Gaussian-like Grassmann integral over the fields v and v gives the
following general structure for the (causal) Green function (3.3.18)

ox,y) =t / DAL(X) 80, A (X)]e A det(y, (3, +ieA,) —mS (X, y; A)  (3.3.19)

where S[A] isthe action (cf (3.2.71)) of the free electromagnetic field, S(x, y; A) isthe electron Green
function in the presence of an external electromagneticfield A, i.e. (X, y; A) isthe causal solution of
the equation

[V (O + 1€AL ] — MIS(X, y; A) =3(X —Y)

and
det(y, (3, +ieA,) —m) (3.3.20)

is the determinant of the Dirac operator in the external field. As usual the functional determinant must be
regularized. The most natural way is to divide it by the free Dirac determinant (cf the regularization of
the corresponding determinant for harmonic oscillator in the external field, section 2.2.2). Thus we use

theratio
= Trin( 1 ! i
oo (i)

o (—1)"e"
= eXp{ -y % / dxa - - dxn TS (x1 — X2) AX2)

n=1

det(y, (3, +ieA,) —m)

det(Vu(au +ieAy) —m) — det()’u(aﬂ —m

- §2 (% — x1) A(xl)]}. (3.3.21)

The non-trivial terms in the expansion of this exponential (i.e. all terms except unity) represent the so-
called vacuum polarization effect. Note that the sum in (3.3.21) goes only over even powers. Thisisa
consequence of the Furry theorem (see problem 3.3.1, page 144).

Explicit and exact integration over the electromagnetic fields in (3.3.19) is impossible and we need
some approximation methods. The first non-trivial approximation for the electron Green function can be
obtained under the following assumptions:

(i) Let usset the Dirac determinant divided by the normalization constant (the free Dirac determinant)
equal to unity, i.e. let us neglect all the vacuum polarization termsin (3.3.21).

(if) After separating the electromagnetic field into the high-frequency part Ath)
AlD ) € / d4k &9 A, (k)
k2>k§
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and the low-frequency part Aﬂf)
AlD ) € / d4k & A, (k)
k2<k?

(for some constant ko), let us use for the Green function of an electron in the externa field the
approximate formula

y
S,y A~ Sx y; AMD) exp {ie / dx/, Ag“(x’)} (3.3.22)

wherethe lineintegral in the exponent goes along the straight contour connecting the pointsx and y.
It can be shown that, for fixed X, y, this expression asymptotically convergesto the exact onein the
limitko — O.

These assumptions allow us to present the path integral for the electron Green function as a product
of two factors:

SO0, y) =t / DAM (x') 818, AT ()1, y; A™) exp(—SI AT
y
x / DAﬂf)(x’)é[auAﬂf)(x’)]exp{—Seq[A(”)]+ie /X dx/, A,g”)(x')}. (3.3.23)

The first factor, containing only the high-frequency electromagnetic field, can be calculated by the
usua perturbation theory and presented in the form

1 /d4 eipx_ip+m_2(p)
(2r)4 p2+ (M — X(p))?

(3.3.24)

where the electron self-energy X (p) is calculated in the lowest (second-order) approximation
corresponding to the Feynman diagram (cf (3.2.187))

k > ko

£

p—k

The momentum of the internal photon propagator is bounded from below by the constant kg which
separates, according to our agreement, the higher and lower frequencies, so that this part of the self-
energy is given by the integral

2 _ _i _
1 / g o — kb m—i(p — ) (3.3.25)
k>kg

T @ Moz m”

Its calculation is performed in the vicinity of the mass-shell, p? ~ —m?, and a subsequent Fourier
transformation yields the infrared asymptotics of thefirst factor §>k° in (3.3.23):

1 3/2
g0 ~ =Cio (2:\‘;0?) 1+ vl)exp[—mko\/ﬁ} (3.3.26)
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def
whererf =n,yu, Ny = Xu/vx2, and

C d_efl_ 7€? 3e? nko
ko = 1672 872 m

3e? A? e?
|:1+ 16m (In -~ + 1>:| — Pko. (3.3.28)

The quantity my, is the electron mass calculated in the second order of the usual perturbation theory,
taking into account only the high-frequency electromagnetic field. The parameter A in (3.3.28) defines
the ultraviolet regularization (e.g., ultraviolet cutoff). Of course, the usual ultraviolet renormalization is
necessary.

Let us now turn to the second factor in (3.3.23), containing the low-frequency fields, as they are
particularly important in the infrared region. The usual perturbation, as we have already mentioned, is
inapplicable in this situation. Fortunately, with our assumptions, the second path integral in (3.3.23)
becomes Gaussian and can be calculated straightforwardly. The answer is given by the following contour
(line) integral:

(3.3.27)

Il &

Mg

e ry ry
exp{ -5 / / dx/, dx] DD+ (x' — x”)} (3.3.29)
X X
where D,(L'L)L(x) isthe (free) transversal low-frequency photon propagator:
1 ; k28, — k, Kk
DD+ / PRUTC ol [ Ty 3.3.30
(X) = 20 h 7 ( )

An approximate calculation (at kov/X2 > 1) of the ordinary contour integrals (3.3.29) yields
exp:——kof+—|nkof+ S(1+2¢ - 2In2)} (33.31)
where € = 0.5772. .. isthe Euler constant. The combination of this‘infrared’” exponential with the first
factor (3.3.28) finally results in the asymptotic expression for the Green function of an electron in the
infrared region:
(tot) \/7 2+ 2 m\/_z
S X)) p2a—m2 (mv' x2) a2 (14+1ri)e” (3.3.32)

Here a is the normalization factor

L
T2 (2n)3/2

3e?
a=14+ —(@—-2—1In2
+8n2( )

and misthe physical (renormalized) electron mass. In terms of the regularization parameter A, i.e. before
renormalization, the mass m can be expressed as follows

3e? A2
= 1—-——(In—+1]].

The transition to the momentum representation via the Fourier transform gives, for the electron Green
function near the mass-shell (p? ~ —m?), the expression

= 3¢? m—ipg
(tot) ~ _
S (P p2aem? (1 —4n2) 5 gk (3.3.33)
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Recall that, together with the non-perturbative calculation, we have partially used ordinary perturbation
theory, so that the infrared asymptotics (3.3.33) of the electron Green function are correct only up to the
higher-order corrections (in the coupling constant €) of ordinary perturbation theory. We stress, however,
that the expression contains all the powers of the coupling constant e (cf the denominator in (3.3.33)), so
that this expression correspondsto the summation of an infinite subset of Feynman diagrams.

As we expected, the electron Green function has a power singularity on the mass-shell (instead of
the ordinary pole, asit would in any finite order of the usual perturbation theory).

3.3.2 Semiclassical approximation in quantum field theory and extended obj ects (solitons)

So far, we have considered field theories quantized in the vicinity of thetrivial field configuration(x) = 0
or (in spontaneous symmetry-breaking) in the vicinity of the non-zero constant field ¢ (x) = a = constant.
However, the field theoretical equations of motion, in many models with appropriate interaction terms,
admit coordinate- and even time-dependent classical solutions with finite energy localized in a restricted
area of the space. Such solutions are called ‘ solitons'. The existence of solitons explains many important
phenomena in particle physics, cosmology, solid state physics etc, which cannot be described within
ordinary perturbation theory. In particular, their existencein non-Abelian gaugetheories providesanatural
way of introducing magnetic monopolesinto field theory. These are hypothetical particles which possess
a quantized magnetic charge (perhaps along with the ordinary electric charge). The modern theory of
magnetic chargeswasfirst formulated by Dirac many yearsago (Dirac 1931) in the framework of quantum
electrodynamics. Their existence has been under active investigation ever since. The Dirac monopoleis
described by afield configuration with a singularity and has to be introduced into the standard QED by
hand’. An intriguing aspect of non-Abelian gauge theoriesis that they have intrinsically existing solitons
with the properties of magnetic monopoles, the so-called 't Hooft—Polyakov monopoles (Polyakov 1974,
't Hooft 1974).

We shall not discuss here the special topic of monopoles (the reader may find an elementary
introduction in Cheng and Li (1984) and a more profound consideration in Rgjaraman (1982)). Instead,
we shall discuss, using some simpler examples, the general problem of field theoretical quantization in
the vicinity of solitons.

A different direction in the study of extended objects in quantum field theory was advocated by
Polyakov (1974) and Belavin et al (1975), who pointed out the importance of the classical solutions
of finite action in the Euclidean space, obtained after the continuation to purely imaginary time. Such
solutions, called instantons, exist only in theorieswith degenerate vacuaand they signal tunneling between
these different vacua. We shall consider this type of extended object in the next subsection.

In both solitons and instantons, the usual perturbation theory fails to describe the phenomena
adequately and we have to use the semiclassical WKB approximation (Dashen et al 1974, Polyakov 1974,
Belavin et al 1975). Aswe have aready discussed in chapters 2 and 3, the path integral is the most natural
and practically convenient tool for developing such an approximation. In this case, we will be simply
making a change of variables in the path integral and the general idea is to consider the contribution of
the fluctuations around the non-trivial minima of the action.

<& Solitonsin the two-dimensional scalar field theory

To provide an elementary introduction to the theory of classical localized solutions with finite energy for
the field equations of motion (i.e. solitons), we shall briefly consider an example of Ag*-theory in one
space and one time dimension. The Lagrangian is given by

c= f dx [3(3ke)? — 10)? — V()] (33.34)
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where 5
Vip) = 56 —a%)? (3.3.35)
and
a2 =m?/x.
The Hamiltonian is given by
H =/dx[%(8t(p)2+ 10x0)* + V(@)1 (3.3.36)

As we have discussed in section 3.2.8, the classical ground-state configuration for the case m? > 0 is

m2
e (3337)

and the ground-state energy is E = 0. An interesting feature of this model is that, in addition, there
exists a static (time-independent) finite-energy solution of the equation of motion, that is, the soliton. The
time-independent solution can be obtained from the Lagrangian £ through the variational principle:

L =35 / dx [3(3x@(x)% + V (9(x))] = 0. (3.3.38)

Mathematically, this is equivalent to the problem of the motion of a particle of unit mass in a potential
—V(q), where the equation of motion is derived from

o 1 (dqg)? B
8L _S/dx |:§ <a) +V(q):| =0 (3.3.39)

(q is the coordinate of this fictitious particle which should not be confused with the space coordinate x;
the field ¢ dependson the latter: ¢ = ¢(x)). Any classical motion of the particle in the potential —V (x)
corresponds to a time-independent solution of the field equation. However, not all of these solutions are
of finite energy. To get afinite-energy solution, we must require ¢ to go to a zero of V (p) asx — +oo,
so that the energy integral in (3.3.36) is finite. In the fictitious particle problem, this corresponds to the
condition that the particle must go to the zeros of the potential ast — +oo. Of course, the ground
states where the particle sits at x = a or —a for al times satisfy this requirement, but there are also
non-trivial motions which satisfy this requirement. The finiteness of energy requires the solution to take
on the vacuum value (+a) at t = 4oo, but since we have a system of degenerate vacua, the solution
may take on different minima (4-a or —a) at different infinity points (+-co or —oo). Thus, for example,
there are motions where the particle starts at the top of one hill and movesto the top of the other and has
zero energy, see figure 3.16. We use this property of zero-energy motion to find the explicit form of the
finite-energy solution in the field theory case. From energy conservation in the motion of the fictitious
particle with zero total energy, we have
2
! (d—q> +[-V(@]=0

2\ dt
which correspondsto the static field equation

1 /de 2_
: (&> — V(). (3.3.40)
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b —Vi(p)

Figure 3.16. The potential —V (¢) for the fictitious particle problem which is equivalent to the soliton problem; the
thin line shows the motion of the ‘particle’ which starts at the top of one hill and moves to the top of another one.

Equation (3.3.40) can be solved easily by integration and the result is

X =+ / i de’ [2V (¢)] 72 (3.3.41)
@

0

where ¢g is the value of ¢ at x = 0 and can be any number between a and —a. The presence of the
arbitrary parameter ¢g is due to the trandlational invariance of equation (3.3.40), i.e. if ¢ = f(X) isa
solution, then ¢ = f (x — ¢) isalso asolution where ¢ is an arbitrary constant. In A¢*-theory, the potential
is given by (3.3.35) and the finite-energy solutionsin (3.3.41) can be written as

¢+ (X) = atanh(mx) ¢—(X) = —atanh(mx). (3.3.42)

The solution ¢4 isusualy called the kink and ¢ the anti-kink. The energy of the kink (or anti-kink) can
be calculated from (3.3.42) and (3.3.36) to give

E = 4m3/31 (3.3.43)
which isindeed finite. Itis clear that, asx — o0, ¢ (or ¢_) approachesthe zeros of V (¢), i.e.
¢+ (X) > +a asX — Foo. (3.3.49)

Thisbehaviour isillustrated in figure 3.17. These solutions can be shown to be stable with respect to small
perturbations even though they are not the absolute minima of the potential energy V (¢) (i.e. ¢ # tafor
al x and t). The physical interest in these finite-energy solutions of the equation of motion comes from
the fact that they resembl e a particle with structure for the following reasons.

e lItsenergy isconcentrated in afinite region of space. Thisis because these solutions ¢4 deviate from
the ground-state configuration, ¢ = +a (zero energy), only in asmall region around the origin.

e It can be madeto movewith any speed less than unity (i.e. less than the speed of light). Thisisdueto
the fact that the equation of motion is Lorentz covariant and we can apply a Lorentz boost to obtain
a solution with non-zero speed.
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P+ (X)

Figure 3.17. The form of the kink solution in two-dimensional rp?-field theory.

The kink and anti-kink solutions in Ag*-theory in two-dimensional spacetime can be characterized
by integers because, from the finite-energy requirement, we have at the spatial infinities:

@(00) — p(—00) = 2an nez

where n = 0 corresponds to the ground state (¢ = +a), n = 1 to the kink solution, and n = —1to the
anti-kink solution. The value of the number n cannot be changed by smooth deformations of the solutions
and, hence, it is a conserved quantum number, called the topological charge. The adjective ‘topological’
just reflectsthe fact that the charge depends on the global properties of the solution and cannot be varied by
a smooth deformation of thefield. The existence of this number providesthe stability of the solitons. This
consideration can be generalized to more complicated theoriesin higher dimensions (see, e.g., Rgjaraman
(1982)).

<& Quantization in the vicinity of solitons

Aswe have just seen, there are four sectors of field configurations separated by the topological quantum
number n. Thus, in the corresponding path integral we have to integrate separately over fields obeying the
boundary conditions appropriate for a given sector.

Aswe have explained previoudly, the kink solution has an arbitrary parameter due to the trand ational
invariance. Thisis a genera property of all soliton solutions. Hence, the change of variables ¢(x) —
od + @ (x) which we have to perform to carry out the semiclassical calculation is not well defined. In
other words, a variation of the trandational parametersin ¢g does not lead to a variation of the action
and ¢g belongs to a continuous family of stationary solutions, whereas the standard stationary-phase
approximation works well only if the stationary points are sufficiently widely separated. Practicaly,
the existence of such a degeneracy leads to a zero determinant when we calculate the fluctuation factor
(and since the determinant appears in the denominator, this produces a meaningless infinite factor). The
solution of this problem (also called the zero-mode problem) reduces to treating these free parameters of
¢q as dynamical variables, which therefore should be determined from ¢ itself (see, e.g., Gervais (1977),
Rajaraman (1982) and referencestherein). We shall consider this method in more detail |ater.
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< Quantization of one soliton in two dimensions

We shall discuss the general two-dimensional Lagrangian for a scalar field
L£=-3@.0%-Vip) (3.3.45)

with only the following condition for the potential :

1
V(p) = V(i) (3.3.46)

(restricting ourselves to the specific example of the kink, which we have studied earlier, does not
essentially simplify the consideration). The meaning of condition (3.3.46) is as follows. Let us define
thefield ¢’ = Ag. Then the Lagrangian and action take the form

1 1
Lp) = pﬁ/(fp’) Sl = FSW]

where £/(¢’), S[¢’] do not contain any coupling constant. Thisimplies that all the dependence of the
integrand in the corresponding pathintegral ~ [ D¢’ exp {iS[<p’] / (Azh)} on the coupling constant comes
in the combination (124)~1 in the exponent. The validity of the stationary-phase approximation requires
that this combination (12%) be small compared with the action S [¢y] of the classical solutions. Thisis
the correct criterion, which is certainly satisfied when 7 and the coupling A are both small. Note that this
property of the action (factorization of the coupling constant) is shared by most of the models we have
considered (e.g., by the Yang—Mills action).

The equation of motion corresponding to the Lagrangian (3.3.45) has a classical solitary wave

solution with finite energy:
= X — vt — Xg
od (X, 1) = ¢@o 17—1)2
where ¢o(X) satisfies the equation

82
—ﬁwo(x) +

=0. 3.3.47
3po(X) ( )

The transition amplitude between the initial and final states described by the wavefunctionals Wi [¢]
and ¢ [¢] is given by the path integral

Sti = (Wil Ft 0y
= /]‘[dw’(x’,tf)]"[dgo(x,tf)<wf|¢’(x’,tf)><¢’(x’,tf)|e—‘ﬁ<tf—ti>|¢(x, ) (@ (X, )W)
= /Dw(X, T) D (X, 7) Ui[p(X, tH)]W[p(X, )]
X exp{i ﬁtf dr/dx[mj) — H(m, (p)]} (3.3.48)
with a Hamiltonian of the form

H =/dx[%n2+ 102 + Vgl
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If, in order to develop a perturbation expansion for the one-soliton sector, we simply expand around
the classical solution ¢g, as in the case of spontaneous symmetry-breaking, we encounter divergences
originating from the trandation invariance of the theory. Namely, the propagator of this perturbation
expansion would be the inverse of the following differential operator:

32 N
4+ P=——t+— 4V 3.3.49
T o2 Taxa TV (w0 (3:349)
where ) X
~o def 0 ¢V
P =5 +V0) Vi) =
X L PR

Taking the space derivative of field equation (3.3.47) satisfied by ¢o, we immediately see that dy¢p is an
eigenstate of ©2 with zero eigenvalue. Thus the propagator is ill defined, since the differential operator
(3.3.49) has a zero eigenval ue (the zero-mode problem).

<& Separation of the centre-of-mass coor dinate (the zero-mode) in the one-soliton sector

To solve this difficulty and to develop a consistent perturbation expansion for the one-soliton sector, we
should, first, separate the centre-of-mass coordinate (such an approach is called the method of collective
coordinates). This can be achieved by a variant of the Faddeev—Popov trick. To this aim, we insert the
following identitiesinto the path-integral expression for the S-matrix element (3.3.48):

/DD(T) HS(D(T) +P)=1 P= /dx N (3.3.50)
9Q
/DX(T) HS(Q[QD(I, X + X(1)), w(t, X + X(r))])ﬁ =1

The first identity is the constraint which serves to identify the variable p(r) with the total momentum of
the system (recall that the Noetherian momentum for afield system with the Lagrangian (3.3.45) reads as
follows: [ dx (—@dxe) = [ dx (—mdxe), see, e.g., Bogoliubov and Shirkov (1959)), while the second
identity is the gauge condition associated with this constraint. The r-dependent functional Q (i.e. itisa
functional only with respect to the dependence of ¢ and = on the space coordinate x) can be arbitrary, but
here we shall consider a concrete example. Note that 8 Q/d X is given by the Poisson bracket:

Q IQIP 9QaIP

5§_{QP}E/ka%5;_5;5;] (3.3.51)

Next, let usmake achange of variablesgp — ¢, = — 7:

(p(fs X) = 5(7:7 X — X(T)) = 5('57 10)
7(t,X) =7(t, X — X(1)) =7 (1, p) (3.3.52)
p=X—X(1)

so that, using ¢ = $ — Xdx@ and the constraint, we obtain
Jdx[mg —Hr, )l = —p(@)X (@) + [ dp [F§ — H (&, §)]

(33.53)
Vi @] = exp{—ipi  X(t )} ¥i t[@].
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From thefirst expression, we seethat X isthe variable conjugateto p, i.e. the centre-of-mass position and
(3.3.52) is atransition to the moving frame attached to this centre of mass. The latter equality in (3.3.53)
reflects the fact that the soliton as a whole (i.e. its centre of mass) moves as a free particle. Thus, we
have explicitly exhibited the total momentum and centre-of-mass position associated with a given field
configuration. If the latter correspondsto a quantum fluctuation around the one-soliton classical solution,
X and p automatically become the position and momentum of this soliton.

Since X appearsonly in theterm pX, we can immediately integrate over X and p which leadsto

Sti = 8(py — pi)/DﬁDwf[mima(p+ P)5(Q)

x {Q, P}eXP{ifdpdr[ﬁéf— H(x, a)} (3.3.54)

where pisnot fixed: p = pi + pr. The stationary point of the action with constraints is given by the
following variational equation:

8/dr[/dp(ﬁ$—%)+a(r)(p+ P)i| =0

where « is a Lagrange multiplier. We obtain, for the lowest energy stationary point (¢ = 0), exactly the
soliton solution

p —p

= 1+ —<((p—a =——3 3.3.55
Pcl = ¢0 ( M2 (p )) Tcl > > x@cl ( )

0 P + Mg

where ¢ isasolution of the equation
2p0 8V

—— 4+ —=0 3.3.56
X2 + S¢o ( )

Mo = [ dx (d¢0/9x)? and the constant a is fixed by the gauge condition. The corresponding classical

energy isfound to be
Ea =/ P2+ M2. (3.3.57)

Next, we have to choose an explicit form for the gauge condition. Although an arbitrary choiceleads
to a consistent perturbation expansion, free of infrared divergences, we choose a linear gauge condition

Qle(z,x+ X(1)] = /dx f(X)e(r, X+ X(1))

9
a_g = [ dx 00k (T, X + X)

in order to eliminate the zero-energy mode in the simplest possible way. Here f is still an arbitrary
function but, identifying it later with the zero-frequency eigenfunction, we can completely eliminate the
zero-frequency mode from the path integral. Now, before making the shift ¢ = ¢o + x, it is convenient
to linearize constraint (3.3.50), which is quadratic in fields, by making the following change of variables:

(3.3.58)

p+ [dpw(t, p)loxg — fcl
fdp foxg

(c is some constant to be defined later). Then the constraint becomes

7(t,p)=—"f(p) + @ (z, p) (3.3.59)

5(p+/dpﬁ8x$)=5<0/dp f(p)w(, p)>.
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Computing the Jacobian of this transformation, we get (see problem 3.3.2, page 145)

()11 far)

which exactly cancels out the 9Q/dX given by (3.3.58). Now the Hamiltonian becomes more
complicated:

(Pt [dom(z, p)l3xg — feD)? 1, 1, o, o~
/dp H= 2 dp T0x0)2 +/dp [Ew + E(E)xgo) +V(<p)j|. (3.3.60)

Here we have to input the normalization [ dp f2(p) = 1. Thetransition amplitude now takes the form

Sti = 8(pr — pn/%%ﬁu@m@m([dp fa)a(/dp fw)
X exp{i/dr/dp 7y — H]} (3.3.61)

and since both the gauge condition and the constraint are linear in the fields, we can easily develop a
perturbation expansion.

<& Perturbation expansion in the one-soliton sector

At this point, we observe that, due to the property (3.3.46) of our potential, ¢q is of the order of 1/4;
accordingly, Mg is of the order of 1/22. We can develop the perturbation expansion in A around the
classical solution

¢ =¢d + x(z, ). (3.3.62)
Here x represents small quantum fluctuations around the classical solution. In general, we can aso
consider a shift of the momentum variable 7 = 7g(p) + (7, p). Thisleads to a relativistic form for
the soliton energy and for the perturbation theory. However, we shall restrict ourselves only to the shift
(3.3.62), because in this case the corresponding perturbation expansion is much simpler.
With the choice of f and c as

1
f=——29 =y c=+vM 3.3.63
NGT X 90 0 v Mo ( )

the Hamiltonian reads as

+ [dowa 1 1 I\
/de = M0+M+/dp |:—w2+—8xx2+V —V(po) — w

x:|+AV (3.3.64)
$0

2Mo(1 + £/Mp)? 2 2
with
- / dp d0(0)x (7. ) (3.3.65)
1 (3xWoldxWo) . (9xWold2g)  (dxWoldxep)? |<\vn|ax\vm>|2}
AV ==| -3 — e —_— 3.3.66
8[ (3x@|Wo)2 (Woldx@)3 ~ (Woldxg)4 2 (Woldxg) ( )

n,m#0
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where Wy, are the eigenfunctions of the operator ©2:

and the scalar product for any two functionsh1(x), ha(x) is defined as usual:
def
thatha) £ [ axhuoonz00,

The additional potential AV starts contributing at the two-loop level (becauseit is proportional to /2 after
explicit recovery of the Planck constant). Aswe learned in chapter 2 (see section 2.5.2), the additional
term AV always arisesif achange of variables, in particular (3.3.52), (3.3.62), is carried out with enough
care.

The Feynman rules for the perturbation expansion can now be obtained. The propagator is
determined from the quadratic part of the Hamiltonian by expanding it in terms of the eigenfunctions
of the following differential equations:

82

The zero-energy eigenfunction is given by Wo. We have chosen f to be given precisely by Wo, so that
the wp = 0 mode disappears from the eigenfunction expansion of @ and y because of the §-condition in
(3.3.61).

Since we have used the first-order formalism, this perturbation expansion involves three different
propagators:

(OIT(x (t1, X0 x (t2, X2))10) (0T (@ (t1, X))@ (t2, X2))|0)  and  (O]T (x (tz, X1) @ (t2, X2))[0).

The Hamiltonian (3.3.64) contains products of x and @ at the same point and therefore there are
ordering problems if we want to write H as an operator. In the path-integral formalism, this ordering
problem also appears in practice because the perturbation expansion contains the mixed propagator
(O]T(x (t, X))@ (t, X2))|0) with zero-time separation, which is ambiguous. Using the discrete-time
approximation for the path integral, we find that the expression (3.3.66) corresponds to the mid-point
definition. Namely, we have to choose the field variables x (t2, X), @ (t21+1, X) and write

/df wx = Z/dXW(tzlJrl, X)X (242, X) — x (z21, X)].
|

Aswe know (see section 2.5), thisimplies that in the operator formalism, AV isthe term associated with
the Weyl ordering for expression (3.3.64) of H. For the perturbation theory this means, in turn, that the
mixed propagator (O|T (x (t, X1)@ (t, X2)|0) for zero-time separation is taken to be zero, i.e. al closed
loops of the mixed propagator are to be dropped.

Note that in this perturbation expansion, Lorentz invariance is not manifest, but we can show that
higher-order correctionsin the coupling constant sum up to restore Lorentz invariance at least at the tree
level (Gervaiset al 1975).

The renormalization of the one-soliton sector can be carried out in a straightforward manner, by
adding counter terms (see section 3.2.7). With this systematic perturbation expansion, we can perform
perturbation calculations of any desirable quantities, e.g., energy or field matrix elements in the one-
soliton sector. We refer the reader for these results and their discussion to Gervais et al (1975),
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Gervais (1977) and Rajaraman (1982). Note that expression (3.3.61) a priori looks like a highly non-
renormalizable Hamiltonian since it involves vertices with an arbitrary number of legs. It is remarkable
that finite results are in fact obtained to any order just by using the same counter terms as in the usual
sector. Already at the two-loop level, this involves a remarkable cancelation among highly divergent
integrals.

< Remarkson the quantization of several solitons

For the case of several solitons, we obviously need to extract more collective coordinates. A general
method for doing this (see, e.g., Gervais et al (1976)) which can be applied to any problem in which
collective coordinates are rel evant exists. For the particular case considered earlier, the generalization can
be achieved quite straightforwardly by introducing into the corresponding path integral the unity in the
form

n
| T1 dXadPs 35(p. + Pul oD5(Qplr. o) = 1

o,f=1
§Qp
J= l_[det{Pa, Qslp = ]_[det <m>
T T
where n isthe number of solitons, «, 8 = 1, ..., n. Itisworth noting that for small 1, the soliton position

moves much more slowly than the other degrees of freedom. Thisisthe standard criterion for introducing
collective coordinates (the so-called adiabatic approximation). In this case we can determine an effective
potential by first solving the dynamics of the other degrees of freedomwith fixed X, Pg. Inthefunctional
formalism, thisis formally done by assuming that W  are eigenstates of P, with eigenvalues py.i, Po. f,
and computing for fixed X,, pg the effective Hamiltonian defined by the relation

exp{—i/drHeff(x, P)} = [ DR D3R + PB(Qy) dellP. QU F1WI7)
x exp{i/dfdx[ﬁéf— HI7, @, xn} (3.3.68)
In the adiabatic approximation, the transition probability is given by

. ) te .
/DXQDPﬁ g Pt Xa(ti) gl Py X“(ti)exp{i/ dt (PyXg — Heff}.
5

If {Py, H} = 0,wehave H = H[7, ¢], which isindependent of X and the dynamicsof X, P istrivial.
The eigenstates are plane waves. In this case, it is better to reverse the method used for the one-soliton
case. Namely, again choosing W; ¢ to be eigenstatesof P,, wefirst integrateover X, and Pg, immediately
obtaining

[T8(Ras = Pect) [ DF DF3(Pu + P5(Qb) (P Q)

x U [P [§] exp{i/dr dx [7§ — H[F. a]]}. (3.3.69)

In order to apply the semiclassical method, we look for the minimum of the action taking into account
the constraints. Technically convenient modifications of the method of collective coordinates have been
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developed by using the BRST invariance (cf section 3.2.7) of the appropriately constructed effective
action (see, e.g., Alfaro and Damgaard (1990)) which are more suitable for the study of solitonsin more
complicated field theoretical models.

It is necessary to add that semiclassical calculations of the sort considered in this subsection reveal
a hidden but physically very important symmetry, known as the duality, of some models with topological
solitons. Such a symmetry was first conjectured by Montonen and Olive (1977) for a model in which a
simple gauge group is spontaneously broken into a U (1) electromagnetic gauge group. They noted that
the semiclassical approximation gives the mass of particles with mass

( 4ni£>‘
vine4+ ——
e

(v isthe vacuum expectation value of the Higgsfield, e isthe gauge coupling constant; n and ¢ areintegers
of any sign), which isinvariant under the transformations:

m=+/2

£—n n— —¢ e— 4n/e.

On this basis, they suggested that the theory with a weak gauge coupling e is fully equivalent to one
with a strong coupling 47 /e. Unfortunately, the purely bosonic theory does not really have this property
(Osborn 1979). However, there are strong indications that theories with the so-called extended (more
precisely, N = 4) supersymmetry (see, e.g., Weinberg (2000)) are indeed invariant under the interchange
of electric and magnetic quantum numbers and of e and 4rr/e. Moreover, even theories with smaller
(N = 2) supersymmetry proved to be invariant with respect to duality transformations of more subtle
sort (Seiberg and Witten 1994). Using this property, Seiberg and Witten were able to carry out prominent
non-perturbative calculationsin thistype of field theory (for areview, see Intriligator and Seiberg (1996)).

3.3.3 Semiclassical approximation and quantum tunneling (instantons)

Instantons are a specia type of vacuum fluctuation in non-Abelian gauge theories and classical solutions
of the Euclidean equations of motion. The instanton, being a solution in Euclidean field theory, is a
minimum of the action in which all kinetic terms are positive. Hence, an instanton solution in a d-
dimensional spacetime is also a time-independent soliton solution in d 4+ 1 dimensions and possible
solutions can be classified simultaneously for both cases. This is based on homotopy theory which we
will not present here (see Ragjaraman (1982)). The instantons are characterized by atopological quantum
number (similar to the topological solitons) and correspond to tunneling events between degenerate
classical vacuain the Minkowski space. The existence of the non-zero topological number means that
it is impossible to deform the instanton field configuration into a zero field, keeping the value of the
field action finite. A distinguishing property of the instanton solution is their finite size in the space and
time directions, so that they are localized configurations and remind us of particle-like behaviour in four
dimensions. In fact, they can indeed be treated formally as akind of particlein four-dimensional quantum
statistical mechanics. However, we should remember that the genuine physical meaning of the solution
is tunnel transitions taking part in the complicated vacuum (ground state) of a non-Abelian quantum
field theory. The transition processes take a finite period of time and therefore the instantons have afinite
‘longitude’ intime. That iswhy these solutionswere called ‘instanton’, the first part of theword reflecting
their time behaviour and the end of the word reflecting their particle-like naturein four dimensions.

The simplest situation relating to instantons happens in non-relativistic quantum mechanics and
corresponds to the tunneling of a particle in the potential V (x) ~ (x2 — a2)2 with degenerate vacuum
states and we shall use this case as our basic example. Then we shall briefly consider the generalization of
the quantum tunneling phenomenon to the case of Yang-Mills theory (quantum chromodynamics). It is
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necessary to stress that instanton calculations are formally very close to the hopping path approximation
which we considered in the first chapter (section 1.2.6). The reader may find more details on instanton
calculationsin Rajaraman (1982) and Schéafer and Shuryak (1998).

<> Tunneling in guantum mechanics and instantons: double-well potential

For an introduction to instanton methods we start with a relatively simple quantum-mechanical problem,
which does not suffer from any of the divergences that occur in field theory. Tunneling is a quantum-
mechanical phenomenon, a particle penetrating a classically forbidden region. Nevertheless, after
continuing the transition amplitude to imaginary time, the tunneling process can be described by classical
equations of motion.

Let us consider an anharmonic oscillator with a Euclidean action

.2
S :/dr |:X7 +V(X)j|

where V (x) is adouble-well potential (cf problem 3.1.9, page 44).
Continuing T = it, the classical equation of motion is given by

d2x dv

e (3.3.70)

where the sign of the potential energy term has changed in comparison with the real-time case. This
means that the classically forbidden regions (for the real time) are now classically allowed. The special
role of the classical tunneling path becomes clear if we consider the Feynman path integral. Although any
path is allowed in quantum mechanics, the path integral is dominated by paths that maximize the weight
factor exp(—S[X¢ (t)]), or minimize the Euclidean action.

Now we choose the concrete form of the potential as follows:

V = A(x% — p?)? (3.3.71)

with minimaat £#, thetwo ‘classical vacua of the system. Quantizing around the two minima, wewould
find two degenerate states localized at x = +n. Of course, we know that this is not the correct result.
Tunneling mixes the two states, the true ground state being (approximately) the symmetric combination,
while the first excited state is the antisymmetric combination of the two states.

Formally, equation (3.3.70) is the same as in two-dimensional 1¢*-theory (cf the preceding section,
equation (3.3.39)) which contains the soliton (kink) solutions. Therefore, we can immediately write the
solution:

w
X (7) = ntanh [E(f - ro)] (3.3.72)

which goes from x(—o0) = —n to X(co0) = n. Here, 1g is a free parameter (the instanton centre)
and w? = 8in?. The action of the solution is § = »3/(121). We will refer to path (3.3.72) as the
instanton, since (unlike the soliton) the solution is localized in time. An anti-instanton solution is given
by X4 (7) = —xa (7).

The semiclassical approximation for the path integral is obtained by systematically expanding the
action around the classical solution, similarly to the case of solitons

1 8253
e HT ) — e S _ 90>
(=nle”"n) =€ fDX(r) e><p{ 2/dr X(r)(SX2

X(7) + - - } (3.3.73)

Xl
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Note that we implicitly assumed t to be large, but smaller than the typical lifetime for tunneling. If
7 is larger than the lifetime, we have to take into account multi-instanton configurations (i.e. multiple
movements of the particle from one extremum to another). It is seen that the hopping path method which
we briefly discussed in chapter 1 (section 1.2.6), in fact, coincides with the instanton calculations in
guantum mechanics. Clearly, the tunneling amplitude is proportional to exp{—S}. The pre-exponent
requires the calculation of fluctuations around the classical instanton solution.

<> Tunneling amplitude at one-loop or der

In order to take into account the fluctuations around the classical path, we have to calculate the path
integral

/DX(t) exp{ - %/dt X(z)GX(r)} (3.3.74)
where O isthe differential operator
~ 1d?>  d?v
O=———+— . 3.3.75
2de? T x|, (3:3.75)

Thiscalculation is carried out in the standard way (see, in particular, section 1.2.7 and the case of solitons
in the preceding section) and it providesa very good illustration of the stepsthat are required to solve the
more difficult field theory problem (Polyakov 1977).

Expanding the differential operator O in some basis {x; ()}, we have

1 ~
/ (den> exp < -5 ; xi O xj> = 1:[(2n)”/2(det 0)~v2 (3.3.76)

The determinant can be calculated by diagonalizing 0, Oxn(t) = enXn(t). This eigenvalue equation

reads as
_d_2+wz[1_#} Xn(7) = €n¥Xn(©) (33.77)
dr2 2c0sP(wr/2) ) T T M o

Formally, this eguation coincides with the one-dimensional Schrodinger equation (where t plays the
role of a space coordinate) for the so-called modified Poshl—Teller potential. In the standard quantum-
mechanical context, this Schrodinger equation is discussed in, e.g., Fligge (1971) (vol 1, problem 39) and
in Landau and Lifshitz (1981). There are two bound states plus a continuum of scattering states. The
lowest eigenvalueis ¢g = 0, and the other bound stateisat €1 = %wz. The appearance of a zero mode is
related, similarly to the case of solitons, to trandational invariance (the fact that the action does not depend
on the location 7o of the instanton). The normalized eigenfunction (/ dt x,% = 1) of the zero energy state

IS
3w 1
00 =g o2 (3379

which isjust the derivative of the instanton solution over tp (see the explanation after equation (3.3.49)):

12 d
Xo(7) = —§, 1/2d—mxc| (t — 10). (3.3.79)

Recall that the presence of a zero mode also indicates that there is one direction in the functional spacein
which fluctuations are large, so the integral is not Gaussian. This meansthat the integral in that direction
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should not be performed directly in the Gaussian approximation, but has to be treated with care using the
collective coordinate method (see the preceding subsection).

In a quantum-mechanical (not a field theoretical) system, the transition to collective coordinates is
not complicated and can be achieved by replacing the integral over the expansion parameter ¢y associated
with the zero-mode direction (we use the mode expansion: X(t) = >, thXn(7)) With an integral over the
collective coordinate rg. Using

dw:%gdo_—ng@mW (33.80)
70

and dx = xodcg, we have dcg = /S dzg. The functional integral over the quantum fluctuation is now

given by
1/2
]‘[ (2—”” \/—/dm (3.3.81)

n>0

/Dxﬁﬂam—$=[

where thefirst factor is the determinant with the zero mode excluded. The result shows that the tunneling
amplitude grows linearly with time, i.e. thereis afinite transition probability per unit of time.

The next step is to cal culate the non-zero-mode determinant. For this purpose we make the spectrum
discrete by considering a finite-time interval [—T /2, T/2] and imposing boundary conditionsat +£T/2:
Xn(£T/2) = 0. The product of all eigenvalues is divergent, but the divergence is related to large
eigenvalues, independent of the detailed shape of the potential. The determinant can be renormalized by
taking the ratio over the determinant of the harmonic oscillator (similarly to what we did in section 2.2.2,
where we used the ratio of the determinants for a harmonic oscillator and afree particle). Theresultis

-1/2
o[ v\ o[- 0]
\/7 / dro (3.3.82)
det[—w—i—w] *Zdet[ 2+a)]
where we have eliminated the zero mode from the instanton determinant, denoting this by a prime:
det — det’, and replaced it by the integration over zp. We also have to extract the lowest mode from
the harmonic oscillator determinant, which is given by w?. The next eigenvalue of the fluctuation operator
(3.3.75) is 3w?/4, while the corresponding oscillator mode is w? (up to corrections of order 1/ T2, that
arenot importantas T — o0). Therest of the spectrum is continuousas T — oo. The contribution from
these states can be calculated as follows.
The potential V" (Xq) islocalized, so for t — +o0o the eigenfunctions are just plane waves. This

means that we can take one of the two linearly independent solutionsto be xp(t) ~ exp(ipr) ast — oo.
The effect of the potential isto give a phase shift

Xp(r) = exp(ipr +idp) T — —00 (3.3.83)

where, for this particular potential, there is no reflected wave. The phase shift is given (Landau and
Lifshitz 1981) by

1+ip/wl+2ip/w
1-ip/wl-2ip/w
The second independent solution isobtained by T — —t. The spectrum is determined by the quantization
condition x(£T/2) = 0, which gives

exp(idp) = (3.3.84)
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while the harmonic oscillator modes are determined by pn T = 7 n. If we denote the solutions of (3.3.85)
by pn, theratio of the determinantsis given by

w? + B2 +p 1 [ 2pdps 1
= ex lo n }—ex {—/ p}:— 3.3.86
U[a)zﬂoﬁ p{z g[ +pn} S B e R (3389
where we have expanded the integrand in the small difference pn, — pn = 8,/ T and changed from the

summation over n to an integral over p. In order to perform the integral, it is convenient to integrate by
parts and use the result for (dép)/(dp). Collecting everything, we finally get

o T 6
(—nle P T ) = [\/gexp{—%ﬂ[ TSOexp{—So}} (@T) (3.3.87)

where the first factor comes from the harmonic oscillator amplitude (cf the calculations in section 2.2.2)
and the second is the ratio of the two determinants.

Recall that in terms of stationary states the ground-state wavefunction is the symmetric combination
Wo(x) = (p—p(X) + ¢,(x))/~/2, while the first excited state E; = Eo + AE is antisymmetric,
W1(X) = (¢—y(X) — ¢ (X))/+/2 (see, e.g., Landau and Lifshitz (1981)). Here, ¢, are the harmonic
oscillator wavefunctionsaround the two classical minima. For timessatisfying T « 1/AE, thetunneling
amplitudeis given by

(—nle” " n) = wE(—mWo(ne BT + Wi (—nwime BT 4 ...

1
= §¢in(—n)¢n(n>(AET)e*wT/2 T (3.3.89)

For largetimes T > 1/AE, we have to take into account the multi-instanton paths, that is, the classical
solution corresponding to multiple movements of the fictitious ‘ particle’ from one extremum to another
and backward, as depicted in figure 1.13, page 93, volume | (recall that in the case of classical stochastic
processes, the analogs of the instanton solutions are called hopping paths). If we ignore the ‘interaction’
between instantons, multi-instanton contributions can easily be summed:

<_n|e—HT|n>=\/7—wT/ZZ/ [ (,()dt|j| (,/ exp{— So}> (3.3.89)
T/2<11<--<T/2

n odd
Td)" w
= [Leetz 3 CIT O GnnTd)
T n! T
n odd

where d = (6S/7)Y2exp{—S}. Under the ‘interaction’ between instantons (which are, of course,
fictitious particles) we understand an account of the difference between the true classical solution of
equation (3.3.70) with multiple movements (from one extremum to another) from just a‘ sewing’ together
of a number of one-instanton solutions (3.3.78). Summing over al instantons simply leads to the
exponentiation of the tunneling rate. Now we can directly read off the level splitting from (3.3.87) and

(3.3.88)
AE =,/ ?a) eXp(—S). (3.3.90)

If the tunneling rate increases, 1/ AE >~ 1/w, the interactions between instantons become important.

It is worth mentioning that in the gauge theory of strong interactions (i.e. in quantum
chromodynamics) the multi-instanton configurations play an important role in attempts to explain the
phenomenon of quark confinement (Callan et al (1979), see adso Schafer and Shuryak (1998) and
referencestherein).
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< Fermions coupled to the double-well potential

L et us now add one fermionic degree of freedom v, (¢ = 1, 2) coupled to the double-well potential (still
in the framework of non-relativistic quantum mechanics). Thismodel provides additional insight into the
vacuum structure, not only of quantum mechanics, but also of gauge theories: we will see that fermions
are intimately related to tunneling, and that the fermion-induced interaction between instantons leads
to strong instanton—anti-instanton correlations. The hames instanton and anti-instanton are attributed to
movements from one extremum to another in opposite directions.

The model is defined by the action

S=3 / dt (X2 + W2 + 9y + W yroy) (3.3.91)

where v, (@ = 1, 2) is atwo-component spinor, the dots denote time derivatives and primes the spatial
derivatives, and W' = x(1 — Ax). We will see that the vacuum structure depends crucially on the Yukawa
coupling constant ¢. For ¢ = 0O, fermions decouple and we recover the double-well potential studied in
the previous sections, while for ¢ = 1, the classical action is supersymmetric (see, e.g., Weinberg (2000)
and supplement V). The supersymmetry transformation is given by

X = Loy Sy = opeXx — W'¢ (3.3.92

where ¢ isaGrassmann variable. For thisreason, W is usually referred to as the superpotential.

As before, the potential V = %W/Z has degenerate minima connected by the instanton solution. The
tunneling amplitude is given by

(3.3.93)

Vv detO
/ dr J Fe S
det’OB
where &, isthe classical action, Og is the bosonic operator (3.3.75) and Ok isthe fermionic operator

~ d
OF = o + cooa W (Xq). (3.3.94)
As explained earlier, Og has a zero mode (related to the trandational invariance) which has to be treated
separately by introducing the corresponding collective coordinate. The fermion determinant also has a
zero mode, given by

t
x® =N exp{;/ dt/CWN(XcI)}

—0o0

1 /1
7 ($i> . (3.3.95)
Since the fermion determinant appears in the numerator of the tunneling probability, the presence of a
zero mode implies that the tunneling rate vanishes. This can be explained by the fact that the two vacua
have different eigenvalues of the fermionic number operator v/ v/_, where /. = (y1 + i2)/+/2. Thus,
the corresponding two ground states |0, +) (where 1&+1}_|O, +) = #£|0, &) cannot be connected by a
bosonic operator. The tunneling amplitude is non-zero only if a fermion is created during the process,
(0, 4+|9410, —). Formally, we get a finite result because the fermion creation operator absorbs the zero
mode in the fermion determinant. For ¢ = 1, the tunneling rate is given by

~ 1 2
(0, +1Y110, —) = ———=e 1/, (3.3.96)
</ 2

TA

Thisresult can be checked by performing a direct cal culation using the Schriodinger equation.
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<& Tunneling and instantonsin Yang-Millstheory: classical vacuain non-Abelian gauge theory and
topology

Before discussing tunneling phenomena in the Yang—Mills theory, we have to become more familiar
with the classical vacuum (i.e. the extremum of the classical action functional) of the theory. In the
Hamiltonian formulation, it is convenient to use the temporal gauge Ag = 0 (Aj = A?A?/2, where the
SU (N) generators satisfy [A2, AP] = 2i f8°°A¢ and are normalized according to Tr(A8AP) = 2s2P). In
this case, the momentum conjugate to the field variables A; (x) isjust the electric field Ej = dgA;. The
Hamiltonian is given by

1
H= PR / d3x (E? + B?) (3.3.97)

where Ei2 is the kinetic and Bi2 the potential energy term. The classical vacuum corresponds to
configurations with zero field strength F,,,. For non-Abelian gauge fields this does not imply that the
potential has to be constant, but limits the gauge fields to be * pure gauge’

Al =iUX)aU) . (3.3.98)

In order to enumeratethe classical vacuawe haveto classify al possible gaugetransformationsU (x). This
means that we have to study equivalence classes of maps from the space R3 (spacelike part of the four-
dimensional spacetime) into the gauge group SU (N). In practice, we can restrict ourselves to matrices
satisfying U (x) — 1asx — oo. Such mappings can be classified using an integer called the winding (or
Pontryagin) number, which counts how many times the group manifold is covered:

1

= a7 | XTI VU VIUTEU)L (3.3.99)
TT

Nw
In terms of the corresponding gauge fields, this number is the Chern—Smons characteristic
(problem 3.3.3, page 146)

ncs d3x 1K (A9; AR + 3 TACARADAD). (3.3.100)

1
~ 1672
Because of its topological meaning, continuous deformations of the gauge fields do not change ncs. In
the case of SU (2), an example of a mapping with winding number n can be found from the * hedgehog’
ansatz:
Ux) = exp(i f (r)z28?) (3.3.101)

wherer = |x|, t@ are the generators of SU (2) in the adjoint representation and X = x/r. For this
mapping, we find

(3.3.102)

nwzg/dr an(f)ﬂzi[f(r)—w} .
T dr b4

2 0

In order for U (x) to be uniquely defined, f (r) hasto be amultiple of = at both zero and infinity, so that
nw isindeed an integer. Any smooth function with f (r — oo) = 0and f (0) = nx providesan example
of afunction with winding number n.

We conclude that there is an infinite set of classical vacua enumerated by an integer n. Since they
are topologically different, we cannot go from one vacuum to another by means of a continuous gauge
transformation. Therefore, thereis no path from one vacuum to another, such that the energy remains zero
al the way. In other words, the vacuum (extremal) field configurations are separated by non-extremal
configurations.
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<& Belavin—Polyakov—Schwartz—Tyupkin instantonsin the Yang—Mills theory

Having found the infinite set of vacua, we may look for a tunneling path in the gauge theory, which
connects topologically different classical vacua. From the quantum-mechanical example, we know that
we have to look for classical solutions of the Euclidean equations of motion. The best tunneling path is
the solution with the minimal Euclidean action connecting vacua with different Chern—Simons numbers.
To find these solutions, it is convenient to exploit the following identity:

1 1 -
= i / dx F2 F& = yre / d*x [:l:Fl"j‘UFa’” +5(FL FF )2} (3.3.103)

where F1Y = 1/2¢Hvpo Foo isthedual field strength tensor (the field tensor in which the roles of electric
and magnetic fields are interchanged). The crucial fact is that the first term in the last expression for Sym
isthe topological charge (cf explanation after (3.3.44)) called the four-dimensional Pontryagin index Q:

=32 / d*x F2, Fam, (3.3.104)

For finite-action field configurations, Q has to be an integer. This can be seen from the fact that the
integrand is atotal derivative:

1 -
Q= @/d“x FijaW =/d4x A KH = /daﬂ KH* (3.3.105)
m 1 nafy a a 1 abc pa pAb aAC
K = T5.7¢ AaaﬁAy+§f ALAGAS ). (3.3.106)

For finite-action configurations, the gauge potential has to be a pure gauge at infinity A, — iUBMUT.
Similar to the arguments given after equation (3.3.98), all maps from the three sphere S® (corresponding
to |X| — oo) into the gauge group can be classified by awinding number n. Inserting A, = iUE)MUJr into
(3.3.105) wefind that Q = n.

Since the first term in (3.3.103) is a topological invariant and the last term is always positive, it is
clear that the action isminimal if the field is (anti-) self-dual:

F2, =+F2,. (3.3.107)

This is a useful observation, because in contrast to the equation of motion, the self-duality equation
(3.3.107) is afirst-order differential equation. In addition to this, we can show that the energy—momentum
tensor vanishes for self-dual fields. In particular, self-dual fields have zero (Minkowski) energy density.

From (3.3.103) we can see that the action of a self-dual field configuration is determined by the
topological charge: S = (872|Q|)/g2. Furthermore, if the gauge potential falls off sufficiently rapidly at
spatia infinity, the Pontryagin index and the Chern—Simons characteristics are related as follows:

Q= / dt % / d3x Ko = nes(t = 00) — nes(t = —o0) (3.3.108)

which shows that field configurationswith Q # 0 connect different topological vacua. In order to find an
explicit solution with Q = 1, it isuseful to start from the simplest configuration with the winding number
n = 1. Similarly to (3.3.101), we can take A, = iU3, U", with U = i%, 7, where 7 = (z, Fi1). Then
Aﬁ = 2nauvXv /x2, where we have introduced the 't Hooft symbol Nauv, defined by
€y M,v=1273
Napy = {

Sau V=4 (3.3.109)
_5av n = 4.
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We also define 77,,,,, by changing the sign of the last two equations. We can now look for a solution of
the self-duality equation (3.3.107) using the ansatz A2 = 27a,,,X, f (x%)/x?, where f hasto satisfy the
boundary condition f — 1 asx? — oo. Inserting the ansatz in (3.3.107), we get

f(l— f)—x?f =0. (3.3.110)

This equation is solved by f = x2/(x? + p?), which gives the Belavin-Polyakov—Schwartz—Tyupkin
(BPST) instanton solution (Belavin et al 1975)

277a,uv X"

a —
A= 7

(3.3.111)
Here p is an arbitrary parameter characterizing the size of the instanton. A solution with topological
charge Q = —1 can be obtained by replacing na,.» with 77,,,,,. The corresponding field strength is

192p%

= Tt (3.3.112)

(F2 )2
The classical instanton solution has a number of degrees of freedom, which should be treated as
collective coordinates (see the preceding subsection). Inthe case of SU (2), the solutionischaracterized by
theinstanton size p, theinstanton position z,, and three parameterswhich determinethe color’ orientation
(i.e. inthe space of the su(N) Lie algebra) of the instanton.
Thus, we have described the tunneling path that connects different topological vacua and from the
value of the classical action for it, S = (872|Q|)/g?, it is clear that the tunneling probability is

Prunneling ~ eXp{—8712/gz}. (3.3.113)

As in the quantum-mechanical example, the coefficient in front of the exponent is determined by a one-
loop calculation (i.e. by the quadratic approximation).

<> Thetheta vacua

We have seen that non-Abelian gauge theory has a periodic potential and that the instantons connect the
different vacua. This means that the ground state of a non-Abelian Yang—Mills theory (in particular, of
the SU (3)-theory, physically corresponding to quantum chromodynamics (QCD)) cannot be described
by any of the topological vacuum states, but has to be a superposition of all vacua. This problem is
similar to the motion of an electron in the periodic potential of a crystal (see, e.g., Davydov (1976) and
Ashcroft and Mermin (1976)). It is well known that the solutions form a band vy, characterized by a
phase 6 € [0, 27] (sometimes referred to as quasi-momentum). The wavefunctions are Bloch waves,
satisfying the periodicity condition ¥y (x 4+ n) = €My (x).

Let us see how this band arises from tunneling events. If instantons are sufficiently dilute, then the
amplitude to go from one topological vacuum |i) to another one | j ), is given by

. )
(lexp(—Aoli) = Y A M'*M"*') OMe M1 H).0 (¢ =Sy M+ M- (3.3.114)
My M_
where K is the pre-exponential factor in the tunneling amplitude and M.. are the numbers of instantons
and anti-instantons. Using the identity

1 2 .
dab = > / do /@D (3.3.115)
7T Jo
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the sum over instantons and anti-instantons can be rewritten as
_ 1 2 o
(jlexp(—=H)|i) = o / do €901 exp[2K t cos() exp(—9)]. (3.3.116)
7 Jo

This result shows that the true eigenstates are the thetavacua, [8) = ), €"|n). Their energy is
E@@) = —2K cos(0) exp(—9). (3.3.117)

The width of the zone is of the order of the tunneling rate. The lowest state correspondsto § = 0 and has
negative energy. Thisisasit should be: tunneling lowers the ground-state energy.

Note, however, that athough we can construct stationary states for any value of 6, they are not
excitations of the 6 = 0 vacuum, becausein QCD the value of 6 cannot be changed. Asfar as the strong
interaction is concerned, different values of 6 correspond to different worlds. Physical arguments show
that the parameter 6 must be very small. Current experimentsimply that

6 <107°. (3.3.118)

The question of why 6 is so small is known as the strong CP problem, because the existence of a non-
vanishing 6-parameter leads to the violation of the charge (denoted by C) and parity (P) symmetries of
the world. The status of this problem is unclear. As long as we do not understand the source of CP
violation in nature, it is not clear whether the strong CP problem should be expected to have a solution
within the standard model or whether there is some mechanism outside the standard model that adjusts 6
to be small.

<& Thetunneling amplitude: pre-exponential factor

The next natural step in the study of instanton contributions is the one-loop calculation of the pre-
exponential in the tunneling amplitude. In gauge theory, this is a rather tedious calculation which was
done by 't Hooft in a classical paper ('t Hooft 1976). Basically, the procedure is completely analogous
to what we did in the context of quantum mechanics. The field is expanded around the classical solution,
A, = Al(f') + §A,. In QCD, we have to make a gauge choice. In this casg, it is most convenient to work

in the background field gauge: D, (A®)3A" = 0, where D2P(A@) = (529, +i f2PAL°).

We have to calculate the one-loop determinants for gauge fields, ghosts and possible matter fields.
The determinants are divergent both in the ultraviolet, like any other one-loop graph, and in the infrared
region, due to the presence of zero modes.

We aready know how to deal with the zero modes of the system: the integral over the zero mode
must be converted into an integral over the corresponding collective variable. After an appropriate
regularization and renormalization of the ultraviolet divergences, the differential one-instanton tunneling
rate dn; for the gauge group SU (N) provesto be ('t Hooft 1976):

2N
4 —1.679N 2 2| d
_ 0.466exp(~1.679 )<8n ) o : 8r }m, (33.119)

= NN =2 2 ()| p°

This tunneling rate corresponds to the contribution of the instantons with the parameters of their size and
position being in the d*z dp vicinity of some chosen values of p, z**. Note that the collective coordinates
corresponding to the ‘colour’ orientation form a compact manifold (as well as the whole group SU (N))
and can be simply integrated over (result (3.3.119) was obtained after such an integration).
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3.3.4 Path-integral calculation of quantum anomalies

An anomaly expresses the breakdown of a classical symmetry by quantum effects. This view of an
anomaly arises quite naturally in the path-integral formalism. As we have discussed in the preceding
sections, the generating functional for Green functions of some field theoretical model is expressed in
terms of the path integral, the integrand being the exponential of the classical action of the model or
the corresponding effective action, i.e. modifications due to gauge fixing and ghost-field terms in gauge
theories, for example. If the exponent (classical or effective action) is invariant under some symmetry
transformations, the symmetry under consideration can still be violated by the path-integral measure,
the quantity which reflects the quantum nature of the theory: in general, this does not remain invariant
under the symmetry transformations. The associated Jacobian (after an appropriate regularization) of
the transformations produces precisely the anomaly (Fujikawa 1979, 1980) (see aso, e.g., Bertimann
(1996) and referencestherein). Although we introduced anomalies (see section 3.2.7) by considering the
regularization and renormalization of Feynman diagrams, this path-integral treatment of the anomaly is
independent of perturbation theory and, for this reason, is called the non-perturbative approach.

In this subsection, we shall perform a chira transformation of the path integral and find the
anomal ous Ward—Takahashi identities. Then, we shall regularize the transformation Jacobian (following
Fujikawa's work) and, in this way, derive the so-called singlet anomaly (related to one-parameter
(Abelian) gauge transformations). We shall discuss the independence of the anomaly from the choice
of the regularization and the alternative between gauge and chiral symmetry. We shall also present
a generalization of the path-integral method to non-Abelian gauge transformations leading to the non-
Abelian anomaly.

<& Fermionic path-integral measure and chiral transformations

Historically, the first example of guantum anomalies was the well-known Adler—Bell-Jackiw chiral
anomaly (Adler 1969, Bell and Jackiw 1969). This is connected with the so-called chiral U (1)
transformation

Y =iaysy Sy =iayys (3.3.120)
where @ isan infinitesimal real parameter. The corresponding Noether current
n () = Vyuys¥ (3.3.121)
obeys classically the following equation
M jp(x) = 2imyrysyr (3.3.122)

and it is conserved in the chiral limit m — 0. In the quantum case, however, the anomalous term
o FFy, (where F,, isthe dual tensor to F,,,, see the definition after equation (3.3.103)) appears on
theright-hand side of the previousequation, spoiling the chiral invarianceof thetheory. Althoughthisterm
could be removed by a suitable counterterm added to the chiral current j 3(X), this counterterm spoils the
gaugeinvariance and is therefore not admissible in any reasonable gauge theory. This situation istypical:
the anomalous symmetries appear in pairs and saving one of them (in the case under consideration, the
gauge symmetry) necessarily spoils the other one (chiral symmetry (3.3.120)). A further example of an
anomalous pair isthe conflict between the scal e and translational symmetries, leading to the so-called trace
anomaly. In the gravitational background, there is also the so-called Lorentz anomaly, the consequence
of which is the anomalous antisymmetric part of the energy—momentum tensor. For a comprehensive
discussion of this and related topics see the books by Treiman et al (1985) and Bertlmann (1996), where
an extensive list of references can also be found.
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< Singlet anomaly

We start with the singlet anomaly related to the one-parameter transformations (3.3.120). Let us consider
guantized Dirac fermions interacting with the non-Abelian field Aﬁ which may be Abelian (in this case,
a isaredundant index) or non-Abelian. The Lagrangianis

L=vyiD —m)y (3.3.123)

with the Dirac operator
D =y"Dy=y"@u+ A (3.3.124)

and the gauge potential A, = AZTa (T2 arethe group generators). For theactual calculations, we perform

aWick rotation to Euclidean spacetime: x0 — x* = ix?, together with the modification of the y °-matrix
(see (3.3.17)) and zero-component gauge field:

o= yt=iy® Ao As=—iAo (3.3.125)
Note that now all y-matrices become anti-Hermitian:
M'=—y* u=1234 (3.3.126)
while the ys5-matrix, on the other hand, remains Hermitian:

def .
vs = oA =yHHhHE T = (3.3.127)

Then, the Dirac operator turns out to be Hermitian in the Euclidean spacetime
pT=D. (3.3.128)

The metric becomes the following:
Ouv = _a,uv' (33129)
Now, we perform alocal chiral transformation:
V(X)) — ¥ (x) = POy (x)
- _ A - (3.3.130)
Y (x) — ¢ (x) = PRIy (x)

where 8(x) denotes some gauge function. For an infinitesimal g8, the Lagrangian (3.3.123) changesto

L— L'=L—@up)i;—2mBpp (3.3.131)
where we have used the axial current )
in=Vyuysy (3.3.132)
and the pseudoscalar density
pp = Vysy. (3.3.133)

Thus, the classical action S= [ d*x £ transformsas follows:

S—» S =S+ / d*x O[] 2(X) — 2impp(x)] (3.3.134)
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and remainsinvariant if the axial current and density satisfy the relation
" j; = 2impp (3.3.135)

in particular, if in thelimit m = 0, the classical conservation law for the axial current is fulfilled.
To approach the phenomena of quantum anomalies, let us consider the path-integral representation
of the Dirac determinant:

det(ip —m) = / Dy (X) DY (X) exp { / d* ¥ — m)w} ) (3.3.136)

Performing here the chiral transformation (3.3.130), Fujikawa discovered that the path-integral measure
transformswith a Jacobian containing the anomaly (Fujikawa 1979, 1980). More precisely, he established
the following result:

e Thepath-integral measure transforms chirally as
DY/ Dy’ = Dy Dy J[B, Ayl (3.3.137)

where the transformation Jacobian J[ 8, A, ] reads as

JIB, Al = exp{— / d*x ,B(X)QI(AM(X))} (3.3.139)

and contains precisely the singlet anomaly in the Euclidean space
[

mwmng—ﬁﬁ

e*Pr Tr Fyy Foo (3.3.139)
(Note that the imaginary unity i disappearsin the Minkowski space.)

<> The Jacobian of the chiral transfor mations

In order to derive expressions (3.3.138) and (3.3.139) for the singlet anomaly (i.e. to determine the
Jacobian of the chiral transformations), it is convenient to write the path integral (3.3.136) in terms of
the mode expansion (cf sections 1.2.3, 2.2.2 and 3.2.1):

o o0
det(ip —m) = / [ [ dan dbn exp{ > (ian — m)bnan}
n=0 n=0
o
= []drn—m) (3.3.140)
n=0
where by, and a, are coefficients of the mode expansion

Y(X) = angn(X)
n=0 (3.3.141)

Y0 =) 9h(0bn
n=0
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over the orthogonal and complete set of eigenfunctions ¢ (X) of the Dirac operator

Den(X) = Angn(X). (3.3.142)

Note that the coefficients by, and a, are Grassmann elements. The substitution of the mode expansion
(3.3.141) into the transformation rule (3.3.130) shows that an infinitesimal chira transformation of the
expansion coefficients reads as

31,1 = Z Onmam
m
_ _ (3.3.143)
b;1 = Z Omnbm
m
with the transformation matrix
Onm = 8nm +i / d*x ,B(X)(pg(x)yypm(x). (3.3.144)

Recall that the Grassmann measure transforms with the inverse determinant (see section 2.6,
equation (2.6.203)), so that

[ ] da;, = (deto)™* [ ] dan
n n

_ _ (3.3.145)
[ ] db, = (deto)~* ] ] dbn.
n n

As aresult, the Jacobian of the chiral transformationis cast into the form

J[B] = (detO) 2 = exp{—2TrInO} (3.3.146)
and for an infinitesimal group parameter 8, it can be rewritten as
J[B] ~ exp { —2Trln <5nm +i / d*x lg(x)(Pz(X))’S(Pm(X)) }
~ exp{ —2i / d*x B(x) Zgo:,(x)ys(pn(x)}. (3.3.147)
n

Applying the completenessrelation ) (pn(X)(p; (y) = §(x — y) for the Dirac operator eigenfunctions, we
see that the sum in the exponentia of (3.3.147) isill defined:

> @b 0ysen() = Trys - §(0) (3.3.148)
n
and requires aregularization.

<& Fujikawa’sregularization of the Dirac determinant: derivation of the singlet (Abelian) anomaly

Fujikawa suggested regularizing the determinant by a Gaussian cutoff:

2
> oh0ysen(x) = d@stoﬁ(X)VseXpi—%, on(X)
n n
. 22
= ,\Al@meﬁ(X)VseXp!—M—”z,wn(X) (3.3.149)
n
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where M is the (dimensional) parameter of the regularization. The Gaussian factors damp the
contributionsfrom the large eigenval ues, providing the convergenceof the sum. Itisconvenient to evaluate
of the regularized sum using the Fourier transform @, of the eigenfunctions

¢n(X) = / d*k &G (k). (3.3.150)

(2m)2
Then, using again the compl eteness of the el genfunctions, the sumin (3.3.149) can berewritten asfollows:

2] .
(2 )4/d4kd4| Ze I|X~T(|)y5exp{ Dz}elkxan(k)

. 2]
= Jim. (2i) N / d*k Tre"kxy5exp:—%}e'kx (3.3.151)

Z @ (X) V500 (X) =

where the trace in the last expression is understood to be both over the y-matrices and over the group
generators. The calculation of thisintegral is carried out with the help of the following decomposition of
the Dirac operator:
D? = y*y'D,D, = (3{r*, v"} + 3lr", ¥' DD, D,
=D,D* + 3 [y v 1Fuw (3.3.152)

where we have used therelation [D,,, D, ] = F,,. The use of this decompositionin (3.3.151) yields the
result (see problem 3.3.4)

M7 Tr Fy F g (3.3.153)

ango;(stgon(x) =57

This, together with (3.3.147), proves formulae (3.3.138) and (3.3.139) for the singlet anomaly.

< Anomalous War d—Takahashi identity

The immediate consequence of the quantum anomaly in chiral theories is the appearance of anomalous
relations between Green functions, i.e. the so-called anomal ous Ward—Takahashi identities. Thederivation
follows the usual steps for deriving the Ward—Takahashi identities in any theory (cf sections 3.1.5 and
3.2.5). We start from the generating functional Z[», 1] for Green functions. For brevity and simplicity
we shall use the generating functional for spinor fieldsin an external Yang—Millsfield, dropping the pure
Yang—MillsL agrangian and the corresponding functional integration over the gaugefields. Therestoration
of the dynamical quantum nature of the Yang-Mills fields adds nothing essential to the discussion of the
anomal ous terms in the Ward—Takahashi identity.

Thus, we consider the generating functional

Z(n, 7, A =01 / DY Dy exp {/ d*X [L + 7y + 1/?;7]} (3.3.154)

and perform the change of integration variable defined by the chiral transformation (3.3.130) with the
parameter 8(x). Since the value of the integral does not depend on the choice of variables and hence on
the value of the parameter 8(x), the differentiation over the latter gives the identity

Zn, i, Al = m*/m'f Dy exp{/d“x £+ 7 + 1/771]}

x [0 ]2 — 2impp — A(AL (X)) + iifysy +igysn] = 0. (3.3.155)

8
3p(X)
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Condition (3.3.155) determinesall (anomal ous) Ward—Takahashi identities of thetheory, by differentiation
with respect to the sources. For example, differentiating (3.3.155) with respect to 77, n and setting the
sources equal to zero, we obtain the following relation between the Green functions:

Y (O[T 200 (X1) ¥ (X2)|0) = 2im(O] T pp(X) ¥ (X1) ¥ (X2)[0) + (O] Ta(A, (X)) ¥ (X1) ¥ (X2)|0)

— (0 TysY (X)) ¥ (X2)[0)8 (X — X1) — (O] T ¥ (X1)¥ (X2)¥5|0)8 (X — X2).
(3.3.156)

We stress that path integral (3.3.154) is independent of parameter 8(x) of the chiral transformations
only taking into account the non-trivial transformation of the functional integration measure (non-trivial
Jacobian). This results in the appearance of the anomalous term 2A(A,, (X)) in Ward—Takahashi identity
(3.3.155).

Fujikawa (1980) emphasized that the anomaly is independent of the chosen regularization for the
large eigenval ue contributionsin the sum (3.3.149). Instead of exponential damping we could also choose
some other function f (x) which is smooth and decreasing sufficiently rapidly at infinity:

A I
with
f(o0) = f/(c0) = f"(00) =---=0
(3.3.158)
f(0) = 1.
We suggest the reader checksthis claim in problem 3.3.6, page 147. For instance, the choice of
A2 1
fl)=——— 3.3.159
( M 2) 1+ An/M?2 ( )

as the cutoff function makes the Fujikawa regularization similar to the well-known Pauli—Villars
regularization (see, e.g., Bogoliubov and Shirkov (1959)).

<& Competition between gauge and chiral symmetriesand the anomaly

Roughly speaking, the calculation of the Jacobian is reduced to the following summation:

oo 4
Y en00ysen (0 =Y Y (5)apPnptna = Trys - 8(x — X))
n n=0«,B=1

N~ p141-1-14141-1-14141—-1—-1+--.. (33.160)

Thesign >~ is used here to stress the mathematical ambiguity of this chain of expressions: its clarification
requires a regularization which we have just carried out. Here, we want to point out that series (3.3.160)
is conditionally convergent so that it has a definite value depending on the way of summation. Fujikawa's
Gaussian cutoff (3.3.149) or any regularizer with the properties (3.3.157) and (3.3.158) correspondsto a
summation which preservesthe gauge invariance. Thisleadsto achiral symmetry-breaking and the chiral
trace becomes anomalous: Trys # 0, in contrast to the naive summation of (3.3.160) in the following
way: (+1+1-1-1)+ (+1+1—1-—1)+--- = 0. Another option isto choose a regularization that
preservesthe exact chiral symmetry. Thiswould lead to an anomaly in the gauge symmetry. This conflict
of the two symmetriesis the consequence of the following general fact:
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e The gauge-covariant operator [p and the chiral matrix y5 do not commute, their commutator
expectation value giving rise precisely to the anomaly

Ol ()L, ys]¥ (x)|0) = ALAL](X). (3.3.161)
Hence, ) and y5 cannot be diagonalized simultaneously.
This, in turn, implies:

e It is impossible to impose both symmetries (gauge symmetry and the chiral symmetry)
simultaneously.

(Calculating the vacuum expectation (3.3.161) pertains to problem 3.3.7, page 147.) Thus the operators
D and ys satisfy a type of ‘uncertainty principle’: they cannot be simultaneously diagonal and the
corresponding symmetries, gauge and chiral, cannot be simultaneously exact.

< Non-Abelian anomaly

So far, we have treated the singlet (or Abelian) anomaly case. But the non-Abelian anomaly is also
determined by the path-integral measure when performing a non-Abelian gauge transformation.
We consider the following non-Abelian Lagrangian (restricting ourselves to the massless case for
simplicity): .
L=viDy (3.3.162)
where the Dirac operator
D=4+B+Ays (3.3.163)
now contains a vector B, = BjT® and an axial A, = AST? gauge potentials. This Dirac operator,
however, is not Hermitian in the Euclidean space
P'(B.A) = D(B, -A). (3.3.164)

As a result, the Dirac operator has no well-defined eigenvalue problem and we cannot use it for the
regularization procedure. One way to overcome the problem is to work with the Laplacian operators
DD or DT, which have different sets of eigenfunctions:

P Don =220 DRTO, =22 (3.3.165)
Note that the Dirac operator and its conjugate transform one set of eigenfunctionsinto another:
Don=rn®n  DT®n = Angn. (3.3.166)

They are Hermitian and have well-defined eigenstates. The regularization is performed in a gauge-
covariant way and thus the regularized Jacobian produces the covariant anomaly (Fujikawa 1984, 1985)
(see a'so Bertlmann (1996) and references therein).

After the expansion of the spinor fields over the eigenfunctionsas follows

Y=Y anp) =Y ¢'(x)bn (3.3.167)
n n

the calculation of the Jacobian of the chiral transformations
V' (X) = exp{—B(X)ys}¥ (X)

_ _ (3.3.168)
V' (X) = ¥ (X) exp{—B(X)ys} B(X) = BA(x)T?
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goesin asimilar way to the case of the Abelian (singlet) anomaly and yields the result
Bl = exp{ / d*x Y (R (0Bysen(X) + d>£(x)ﬂy5<1>n(x>)}. (3.3.169)
n

The next step isthe same asin the Abelian case: we have to regularize the sum in the exponential

> (@h () Bysen(X) + 1) Bys®n (X))
n

M — o0

;
N /(2 7 [ﬂe fx (exp{ DD}+exp{ L })é"X] (3.3.170)

The calculation of the right-hand side gives the so-called covariant anomaly:

2
lim exp{ ”2}Z(wﬁ(x)ﬁyscpn(xw<1>$<x)/3ysd>n(x>)

Z(‘Pn(x)ﬂVS(Pn(X) + O 0BYsPn(X)) = fr B TrB(FS il + FuFay)  (33.170)

where F>;, denotesthe field strength corresponding to the chiral gaugefield Ay = B, +A,,.

When working with the fermionic path integral the problem of regularization always occurs.
Fujikawa's Gaussian cutoff procedure is one possibility, but other techniques also exist, e.g. the heat
kernel and zeta function regularization which are elegant and based on mathematically solid grounds. For
details of these methods, we refer the reader to Bertimann (1996) and references therein.

3.3.5 Path-integral solution of the polaron problem

An electron movingin apolar crystal polarizesthe crystal latticeinitsvicinity. Obviously, the perturbation
of the crystal is not static but follows the electron. More precisely, this interaction of an electron with its
surrounding ionic lattice induces vibration of the crystal lattice. In fact, we have already considered the
simplest variant of lattice vibrations at the very beginning of chapter 3 (see section 3.1.1), as a prototype
for ascalar field theory. However, in solid state physics, the quantum theory of lattice vibrations (in more
complicated variants) is of great interest, both from the theoretical and practical points of view, in itsown
right. Aswe learned in section 3.1.1, the transition to normal modes allows us to describe the excitations
of alattice within the second-quantization formalism, in terms of quasi-particles. In the case of the crystal
|attice, the corresponding quanta of excitations (quasi-particles) are called phonons. The interaction of an
electron with these lattice excitations leads to the ‘dressing’ of the ‘bare’ (free, non-interacting) electron
by ‘clouds of phonons. This both lowers the energy of the electron and increases its effective mass in
comparison with the case when the electron interacts with arigid, non-vibrating | attice, i.e. when it moves
in afixed external periodic potential (for a definition of the effective mass in the latter case and a general
introduction to solid state physics see, e.g., Ashcroft and Mermin (1976)).

e Aneéelectron moving in acrystal together with the accompanying lattice distortion or, in other words,
the physical state of an electron surrounded (‘dressed’) by a cloud of phononsis called a polaron
(see, e.g., Kittel (1987) and referencestherein).

The polaron problem can also be considered as an interesting field-theory model of non-relativistic
particles interacting with a scalar boson field, and it was widely studied in two contexts: the practical
study of crystal properties and the abstract non-relativistic quantum field theory.
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w

optical modes

acoustic modes

Figure3.18. Qualitative behaviour of the dispersion curvesfor optical and acoustical phononsin crystals. The broken
line shows the domain of interest: it is seen that in this domain, the frequencies » of the optical phonons are amost
independent of the wavevector k.

< Vibrations of a crystal lattice and the polaron Hamiltonian

It is worth mentioning that a real crystal lattice has an essentially more complicated structure than that
depicted in figure 3.1 or its straightforward three-dimensional generalization. We shall not go into a
detailed description, referring the reader to the previously cited books, but just notethat acrystal latticeis
formed by periodically arranged cells, each consisting of a few ions. Correspondingly, the structure of the
possible vibrations of such latticesis richer than that of a simple cubic lattice with oneion at each site (as
depicted in figure 3.1 for the one-dimensional case). In particular, there are the so-called acoustic phonons
when the ions of a cell vibrate in the same phase (these phonons correspond to propagation of a sound
in the crystal) and there also exist optical phonons. In the latter case, the ions of a crystal cell vibrate
with opposite phases, so that the centrum of mass of the cell remains at rest. The formation of a polaron
is caused mainly by the optical phonons. The distinctive property of the latter is that their frequency is
amost independent of the wavevector, while acoustic phonons have an almost linear dispersion law, see
figure 3.18.

Let usagreethat the potential of the non-perturbed fixed | attice is taken into account by the changein
the electron mass (i.e. the substitution of the mass of afree electron by the effective mass in the periodic
potential of the fixed lattice). If the latticeis distorted because of the presence of an electronin the crystal,
the potential V (x) which acts on the electron due to this deformation is defined by the Laplace equation

V2V (X) = eo(X) = —eV - P(X) (3.3.172)
where P(x) is the polarization vector, e is the electron charge and p(x) is the charge density caused by

the polarization. The polarization vector (which is proportional to shifts of ions) can be written via the
normal modes (via Fourier transform, cf section 3.1.1) asfollows:

d3k > ikx * —ikx
P(x) =Cfmg[a(k)e e + & (ke '"al (3.3.173)

(g are three orthogonal vectors). After quantization, the modes a; (k), aiT(k) become the creation and
annihilation operators of (optical) phonons. Equation (3.3.172) shows that only the longitudinal mode
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(along the wavevector k) contributesto the polarization charge density. Therefore, we can neglect the two
transversal modes.

Calculations of the charge density according to (3.3.172) yields the change of the potential energy of
an electron caused by lattice vibrations (in other words, due to the interaction with phonons):

5 3\ 3 A ,
V(X) = —i(v/27a)Y/? (hr: ) (gﬂtgl—il(aﬁe'kx — ae®). (3.3.174)

It can be shown (see, e.g., Kittel (1987)) that the dimensionless e ectron—phonon coupling constant is
expressed via crystal and electron characteristics as follows:

1/1 1\ € /2mw\Y?
o == (8_ — 5) — <T) (3.3.175)
o0

where g and e, are the static and high-frequency dielectric constants, respectively; w is the (constant)
frequency of the optical phonons, m and e are the electron mass and charge. The potential (3.3.174)
implies the following Hamiltonian for the electron—phonon system, suggested by Frohlich (1937, 1954)

2 i 1/2
_p S e i(v2ra) )3 1 e ikx ik-x

H = 7 + . akak + T . m[ake - akel ] (33176)

where p = —iV is the electron momentum operator, x is its coordinate, and L2 is the volume of the

crystal, which tends to infinity. The ks are the usual normal modes (e.g., k = 27L~1(ny, ny, n3) for a
cubic box) and, asusual, L=3Y", — (27)72 [ d°k. Also the k = 0 mode is omitted (it describes the
rigid lattice and we have agreed to include its effect in the effective mass). In expression (3.3.176), for
simplicity, we have used such unitsthat s = m = w = 1.

As usual, we cannot find the exact eigenvectors and eigenvalues of the Frohlich Hamiltonian
(3.3.176) and have to devel op some approximate method. The choice of thelatter depends on the value of
the coupling constant:

e if thecoupling constant is small, @ <« 1, we can use the perturbation theory;
e forred crystals, the coupling constant o takes valuesin the range 1-20 (e.g., for crystals of common
sdt, @ &~ 5); in this case, we have to use some non-perturbative variational methods.

The first case has no direct practical applications. From the technical point of view, we may use
the ordinary stationary perturbation theory of non-relativistic quantum mechanics, so that the shift of the
electron energy inside a crystal is given by the standard expression (see, e.g., Landau and Lifshitz (1981)
and Davydov (1976)):

Ol HineIn) (| Hind0)

3.3.177
ES - EQ ( )

AEo = (O|Aiml0) + ¢
n
where we have separated the Frohlich Hamiltonian (3.3.176) into two parts. the free Hamiltonian
Ho = EZ + Z aiak (3.3.178)
2 k
and the interaction Hamiltonian

Hint = kX _ aydx]. (3.3.179)

L3
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Thestates|n),n=0,1,2,...,in(3.3.177), are the eigenstates of the free Hamiltonian Ho, while Er? are
the eigenvalues of Hg corresponding to |n). In fact, the corresponding calculations are quite similar to
those in the relativistic field theory. In particular, the contribution of the lowest order of the perturbation
theory can be represented by a Feynman-like diagram similar to that on page 81

where the wavy line now represents the phonon propagator ~ 1/k? and the full line with an arrow
corresponds to the non-relativistic electron propagator. The calculation in the first order in the coupling
constant yields

2
AEg = —a£ arcsin— — —a. (3.3.180)
\/_ 2 p—0
For small (but non-zero) momenta, expression (3.3.180) can be expanded in aseriesin p?:
2 2
p p
E=Ey+AE= — —a — —
o+ 0= 5 o 12a + -
p2
_ _ . 3.3.181
21+a6) ¢ ( )

This expression shows that the interaction with phonons increases the effective mass of an electron by a
factor (1 + «/6).

<& Feynman variational method for the large coupling constant

As we have aready mentioned, in real crystals the electron—phonon coupling constant takes large values
and the perturbation theory cannot be used. Thus, to estimate the polaron ground-state energy Eg, we
have to use another approximation scheme. To thisaim, let usfirst passto the imaginary time T = —it,
so that

dft _, o AT

and then use the obviousformula
1 Py
Eo = lim [—— In(Tre‘HT)] (3.3.182)
T>o0 T

Now, the trace of the exponential can be represented by the path integral and we can use some non-
perturbative approximation method for the eval uation of the path integral. 1n the present case, the Feynman
variational method (see later) proves to be most suitable. In order to apply it, let us pass in the phonon
Hamiltonian from the annihilation and creation operatorsto the corresponding coordinates and momenta.
After the Gaussian integration over the momenta, we arrive at the configuration path integral:

Tre HT = / Cix@=x(Ty DX(®)Da(z, k)es (3.3.183)
C{a(0.k)=q(T.k)}
where the action S hasthe form

s=/dr [Exz(rw/ dk <3(q2(r k)+q%(t )+ v2(v Zra) 2
2 (2m)3\ 2 ’ ’ K|

q(z, k)eikx(”ﬂ (3.3.184)
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(x are the electron and g are the phonon coordinates). The path integral over the phonon variables is
Gaussian and we can explicitly calculateit. In fact, we can use the available result of the path integral for
adriven oscillator (see (1.2.262)), which in the present case yields

Py 1 T
Tre HT ~ / Dx(1) exp{ - —/ dr Xz(r)}
X(0)=x(T)

K 1 koo -x(s)gle— s|}

X exp {2f2na/ drds @02 kze‘ e (3.3.185)
where we have taken into account that we are interested in the expression at large values of the imaginary
time T, so that we could drop terms which give relatively small contributions in this limit. The only
difference between the integral (3.3.184) and (1.2.262) is that both the phonon coordinates and the
‘external (time-depending) source’ are complex. But the generalization of (1.2.262) to this case is quite
straightforward and can be easily carried out by the reader (note that the results for real and complex
quantities look identical). The integral over k in the exponent of the integrand in (3.3.185) can be
performed (asit is the Fourier transform of 1/x), yielding

n [T—s]
et [ pxeree| g [anio e & [Taras [ 20 )
e X(0)=x(T) X ep O e NG : IX(T) — X(5)|

(3.3.186)

Thisintegral cannot be calculated exactly. To estimate the ground-state energy from above, we shall use
the Feynman variational method (Feynman 1955). To thisaim, we first write

s_ [Dx(me S Ve / S _ (o= (5-%) / -5
/Dx(r)e = TDX@) = Dx(r)e 0 = (e )s | Dx(v)e (3.3.187)
where Sisthe exponent in (3.3.186):
1 T > e ]
= E/o dr x°(7) — / / X —XO)] (3.3.188)

and S isatest action to be chosen. Then using the Jensen inequality (see (C.2) and (C.5) in appendix C,
volumel), we obtain

/DX(r)e*S > exp{—(S— So)so}/DX(f) e %
where
def | Dx(7) (S— So)e
(S—9) = / -
[ Dx(x)e
(mathematically minded readers may easily generalize the proof of the Jensen inequality in chapter 1 to
the functional case). On the other hand, at large values of T, the trace can be estimated by the ground

state: Tre TR 1 oo ~ e ET (here E denotes the ground-state eigenvalue of the Hamiltonian A). Thus
we arrive at the estimation

E<Eog+ = (S s (3.3.189)
where Eg is the energy corresponding to the test actlon S
Eo=— I|m —In/Dx(r)e . (3.3.190)

It is worth noting that the second term in the action S given by (3.3.188) corresponds to a retarded
potential. The physical reason for thisis that a perturbation of a crystal lattice, caused by the motion of
an electron, propagates with afinite speed.



142 Quantum field theory: the path-integral approach

<& Choice of thetest action

Thenext step consistsin the choice of an appropriatetest action S which givesthe best (lowest) estimation
(3.3.189) for the polaron ground energy. It is clear that an optimal choice depends on the value of the
coupling constant «:

(i) Foraweak electron—phonon coupling, @ « 1, itisreasonableto choose as & the action without any
potential term (i.e. to drop in (3.3.188) the second term completely): S = S|y—o. In this case, the
result coincides with that of perturbation theory:

E—Eo< —a. (3.3.191)

Note that the inequality (3.3.191) gives the upper bound for the energy shift and that it is not easy to
obtain this estimation by the usual operator methods.

(if) For the strong electron—phonon coupling, « > 1, a crystal reacts to the electron movement very
quickly and we can use the test action & with the potential term V (x) for the electron in a fixed
external potential, e.g., in the harmonic potential. In this case, the Feynman variational method
provesto be equivalent to the ordinary Ritz variational method in quantum mechanics (with the test
function of the form ~ =),

(iii) It can be shown that, for intermediate values of the coupling constant, 1 < « < 6, instant test
functions do not provide a good energy estimation: no potential term provesto be better than just the
zero potential, V = 0. For this practically important domain of values we have to use some kind of
retarded potential. A natural choiceis

1 (7 c [T
S = —/ de(r)+—/ dr ds(x(t) — x(s))2e” WISl (3.3.192)
2 Jo 2 Jo

where C and W are constants to be adjusted to obtain the best upper bound. The choice of the
action § can bejustified by the following arguments: (i) it is quadratic and hence the corresponding
Gaussian path integral can be calculated; (ii) it is retarded potential; (iii) the exponentia factor is
analogousto that in theinitial action S.

Thus, to find the upper bound for the ground-state energy in the case of intermediate values of the
coupling constant, we have to calculate

S—S)s = i< Td dsle> 9< Td ds (x X(s 2ef$'> (3.3.193)
(S— >%——\/§/0 . |X(t)—X(S)|%_2/0 £ ds(X(z) — X(9)) R

Recall that the averaging is understood with respect to the action & astheratio of two path integrals:

D —SF
(FIX(D)Dg 2 / )}(lt?)x(ir) eﬁz(’)]. (3.3.194)

o

Asusual, it is convenient to calculate, first, the generating functional

T
Z[J] = <exp{i/ dr J('C)X(‘L’)}> . (3.3.195)
0 S

Then the mean value (F[x(7)]) s, for polynomial functionals F (in particular, for the second term on the
right-hand side of (3.3.193)) can be obtained by functional differentiation, while more general functions
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are calculated with the help of the Fourier transform. In particular, for the first term in (3.3.193) we may
write the representation

<;> =< d 4_7Teik(X(r)X(S))>
xo—xells ~\] @Eie .

d3k 4
_ fwk—’;zu(u)]

(3.3.196)

J(W=k[§(u—1)—6(u—S)]

The generating functional (3.3.195) can be calculated by any method considered in this book, e.g.,
discretization, square completion, quadratic ‘ approximation’ (which is exact for quadratic Lagrangians),
mode expansion. In problem 3.3.8, we suggest the reader calculates this generating functional by the
last method. Using the result of this calculation (see (3.3.227)) we readily obtain for the second term in
(3.3.193)

cl [T 3TC
= drd - 2g=Wit—sl} =~ 3.3.197
2</0 tds|x(r) — x(s)|°€ o~ UW ( )
where ac
uz=w?24+ =
Tw

while for the first term in (3.3.193) the calculation of the Fourier transform (cf (3.3.196)) at large values
of T gives

Tdrgs [0 Aty %y e’ 3.3.198
S A u . .O.
/o i <|X(T)—X(S)|>sD V2 Jo VW2U+ [(UZ=W2)/U](1— e W) ( )

The ground-state energy Eg corresponding to the test action S can be determined using the general
formula(3.3.182) but it is easier to use the following trick. First, we find the derivative

dEo(C) 1 d B
aC T T [ Dx(r) expl—S) AC /DxeXp{ =}

<— %/dt ds|x(t) — x(s)|2e‘W"‘S>

1
T
3

3
UW W,/ W2+ 4C/W’

Now Eg can be found by the integration of (3.3.199) with the obvious boundary condition Eg|c—o = O.
Thisyields

S

(3.3.199)

Eo=3U-W). (3.3.200)
Collecting all the results, we finally find the upper bound for the polaron ground-state energy E:

E < E0+%(S—So)%

3 2 aU \/*OO eﬁu
— —U-W?2-— [ d :
%0 ) NEWL u\/W2u+[(U2—W2)/U](1—e—UU)

The constants W and U (or C) should be adjusted to obtain alowest upper bound. For extremal values of
the coupling constant, this can be done analytically:

(3.3.201)
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(i) For small «, the best values of the constants are:

20 2
W=3 U=3[1+3—W<1—W[ 1—W—1D] (3.3.202)
Then the upper bound turns out to be
o
E<-—o—123 (1—0) . (3.3.203)

This estimation can be compared with the correct result obtained from the perturbation expansion:

E~—a—126 (1%) . (3.3.204)

(ii) For large «, the best valuesfor W and U are
4g2 1
W=1 U=——-4(In2+=¢)+1 (3.3.205)
O 2
where @ = 0.5772. . . isthe Euler constant. These values give the following estimation;
2
o 3 3 1
E<——-—-QCIn2+)—-+0(=]. 3.3.206
< 5o —5@IN2+ G — 7+ <a2> ( )

For intermediate val ues of the coupling constant «, theintegrationin (3.3.201) cannot be done analytically
and (rather simple) numerical calculations should be used. It is necessary to stressthat there are no other
methods, except the Feynman variational one based on the path-integral technique, which would give
reliable results for the intermediate values of the electron—phonon coupling constant «. The reader may
find further details and results on the polaron problem in Feynman (1972a), Kittel (1987) and Heeger
(1988).

3.3.6 Problems

Problem 3.3.1. Provethe Furry theorem (Furry 1937), which can be formulated as follows:

e The determinant (3.3.20) of the Dirac operator in the external field A, (x) is an even function of
AL (X).

Hint. Aswe have mentioned, the functional determinant must be regularized. The most natural way is
to divide it by the free Dirac determinant (see the regularization of the corresponding determinant for a
harmonic oscillator in an external field, section 2.2.2). Thus, we have to provethat the ratio

det(yﬂ(aﬂ + ieAM) —m)
det(yp.(ap. —m))

of the Dirac operatorsis an even function of An(x). The required statement follows from the following
chain of equalities:

det| 1 L
(W—m'e’\)

det{1+i !
<+IeA;‘3—m)

= det|1+ (i 1T—det1 1 oiepT
= +(|eAa_m) = <+ﬂT_mleA>
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-1 : -1
det [1+ (J/z p ) (VzleAJ/z )]
1 ; -1
=det|{1+ fllen/\yz
y2@y, - —m

1 .
= det(l—a_mle/\>.

Note that we use Euclidean y -matrices:

YuVv + V¥ = 28,0 w,v=1234

in the standard representation

(0 o . (1 0

for which the following relations are correct:
yﬂT = Yu foru =1, 3,4, )/ZT = —yo.
The latter relations, together with the obvious one, a; = —0y, imply
e vt =8 ATyt =—A
Problem 3.3.2. Calculate the Jacobian of the functional change of variables (cf (3.3.59)):

p+ [doaw(t, p)[oxg — fcl
fd,o f8x$

where f (p) issuch afunctionthat [ dp f2(p) = 1, and p, c are constants.

7t p)=—1(p) + (7, p)

Hint. We have to calculate the determinant of the operator with the kernel

swt.p) LT T T T (00

| T (@] — C(fl)} st —t)

f(0)(@3x@(p") — cf ()0’))} st —t)

_ [1 1
B (f10x®)
where in the second line we have used the Dirac notation for the Hilbert space of functionswith the scalar
product ( f|g) = [dp f(p)g(p). Then,

Sm(t,p) | 1
et[m} = Uap{Trln[l Tioe >|f>(<ax<p|_c<f|)“

_ _TTe / dpf(P)axa(Lp)}
1_[ { f|ax§0>} l:[ [

The second equality follows from the relation:

-1

1 _ " (ax@] ) — c(f] )
T 1) (@] — ()| = 2
rl:(f|ax§0>| Mool — ')} (F1xd)

B [<axa|f>—c}”
L (flxg) |
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Problem 3.3.3. Verify that for a‘pure gauge’ field configuration (3.3.98), the Chern—Simons topological
characteristic (3.3.100) turnsinto the winding Pontryagin number (3.3.99).

Hint. Write the integrand of (3.3.100) in matrix form, substitute (3.3.98) and convert into (3.3.99) using
the antisymmetry in the indices and the unitarity relationUTU = 1.

Problem 3.3.4. Using decomposition (3.3.152) of the Dirac operator, calculate the regularized
determinant of the Dirac operator represented in terms of the Fourier transformed eigenfunctions as in
(3.3.151).

Hint. Use the fact that the plane waves shift the differential operator (f isan arbitrary smooth function)
e £ (9,)€" = f (3, +ik,) (3.3.207)

so that after rescaling the integration variable, k, — Mk, the sum (3.3.151) can be represented as
follows:

2ik, D* D, D* KyVE
t T 4 4 no_ U _ Pu YTV P
Xn:(l’n(x)VS(Pn(X) - M'Lr)noo M (27_[)4 /d k Try5€Xp {kﬂk M MZ 2M2 }
(3.3.208)
It isimportant that the properties of y-matrices, namely,
Trys = Tr(y5y“yv) =0 (3.3.209)
Tr(ysyty yPy?) = —4ghvre (3.3.210)

leave in the integrand of (3.3.208) only the quadratic term in y*y”F,,, in the limit M — oco. A
subsequent Gaussian integration over k,, produces expression (3.3.153).

Problem 3.3.5. Calculate the singlet chiral quantum anomaly in a two-dimensional Abelian gauge-field
theory.

Hint. To calculate of the Jacobian of the chiral transformation (cf (3.3.138)—(3.3.149)), we have to
regularize the sum

2
D en)ysen(x) = lim 3 gn(x)ys exp :—% } ¢n(X). (33211)
n n

Decomposing the squared Dirac operator (cf (3.3.152)), shifting the differential operator (see the hint to
the preceding problem, equation (3.3.207)) and rescaling the momentum k,, — Mk,,, we obtain for the
sum:

> oh0ysen(x) = lim M?
o M— o0

(2m)4
—2ik,D*  D,D* iyHyYF
2 U Iz YUV Fuw
x/d kTr<y5exp{—kMk“— M YR TYY })
(3.3.212)
In two-dimensional Minkowski spacetime, the y -matrices and metric have the form
=02 yl=ion  ys=y%'=o03
(3.3.213)

Ouv = 1 0 801:1
" 0 -1
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whilein two-dimensional Euclidean spacetime, they become

0_j 0,1 __ .41
Yy o =lya Vo=y Yy =1y'y
. . (3.3.214)
g;w = —8;“; Eq1 = legr = 1.
Note that the relations
Yuvs=ewy’  Trysyuve = —2eum (3.3.215)

arevalid in both Minkowski and Euclidean spaces. Next, we expand the exponential and take the trace of
the Dirac matrices. As aresult, we find the regularized sum

i
D enysen(x) = — e F. (3.3.216)
n

Thus the Jacobian of the corresponding path-integral measure reads as

1
J[Bl = eXp{ —/dXﬁ(X)z—ewF“”} (3.3.217)
JT
and the anomaly provesto be the following:
1 v
A= ZSWF . (3.3.218)

(This result is valid both in Minkowski and Euclidean spaces if the e-tensor is understood in the
appropriate sense, i.e. asin (3.3.213) or in (3.3.214).)

Problem 3.3.6. Provetheregularization independenceof the chiral anomaly, i.e. check that the calculation
with an arbitrary regularization function f (x) satisfying the conditions (3.3.158) (instead of the damping
exponential) leads to the same result (3.3.218).

Hint. Repeating the steps of the calculations performed with exponential damping, we arrive at the
expression
1

2214

Z¢;(x)y5¢n(x) = / d?k £ (k?)e" 8 Tr(F,, F*) (3.3.219)
n

and the subsequent integration by parts taking into account conditions (3.3.158) gives the same result
(3.3.153), asiin the case of the exponential regularization function.

Problem 3.3.7. Calculate the expectation value (3.3.161) of the commutator of the gauge-covariant Dirac
operator [ and the ys5-matrix.

Hint. Expanding the Dirac spinors v/, ¥ in terms of eigenfunctions of D (see equation (3.3.141)), we
obtain

- . 1 - - . . -
Oy 0)2iysPy (0[0) = / [ Jdai dbi Y bmangi(x)2iysPen(x) exp{ > i — m)bkak}
i m,n k

(3.3.220)
where the normalization factor is the usua Dirac determinant

N = det(ip — m). (3.3.221)
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Thisintegration gives (recall that by, & are Grassmann variables)

;
n ; _ ©n(X)y5Den(X)
01 () 2iysP Y (x)]0) = ZXn: i (3.3.222)

For the commutator we then find

(1Y ()ilys, Pl (x)[0) = (O|1/_/(x)2iy517)1//(x)|0

®n (X)VSDQDn x)
B 22 An +im
Pn0Ys(D + imen(x) od ()i ysen(X)
2 Z An + im Z n + im
1 -
= — 255" Tr Fus Fup + 2M(01% (0051 ()[0) (33223)

where we have used the regularization result (3.3.153). So we have obtained the anomaly and also the
mass term which explicitly breaks the chiral symmetry (the chiral symmetry exists only in the massless
theory).

Problem 3.3.8. Calculate the generating functional (3.3.195) for the test action & (3.3.192), used for
estimating the upper bound for the polaron ground-state energy.

Hint. The periodic boundary conditionsfor the variables x (t) impliesthe following mode decomposition:

X(r) = X(0) + Y ansin n’TT—T (3.3.224)
n=1

The terms of the action S now acquire the form
T
1, 1 n
/0 dr EX 2 Z
1 (7 ) 1 ntt . nrsy 12
EC/ drds[x(zr) — x(s)]%e WISl = EC/ dr ds[ (sm— —sm—)} g Wir—s|
0

large T
i n2 Z/T )
RV, Z W2 + n272/T2 an-

Introducing also the Fourier transform of the external source:

.
bn=i/ dr J(r)sin 2~
5 T

we can easily find, after Gaussian integration over the mode variables a,,

o b2
Z[J] = exp{ Z —"} (3.3.225)
— 4A,
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where b 5
n 4C/W
An == il + / .
47 W2 4+ n2g2/T2
For the particular form of the external source

JWw) =K[§u—1)—38(U—9)]

expression (3.3.225) becomes

ZIK] = e i —K?[sin(nrz/T) + sin(nes/ T))? (3.3.226)
= ep I o 3.
n=1 T T WZin2n272
21 w2 4C 1 1
R I U 1— —|t—s|U —(t+s)U _ —-2Ut _ —-2Us
Tfo’oe)(p{ 2 |:U2|T S|+WU3< © te 2° 2°
K2 | W2 4C e
- ex"’{‘? [m'f—s”w—m“—e ' s'”>” (33227)
where
U2 = w2+ 4c
= W

To calculate (3.3.226), we have substituted the sum by theintegral over thevariablens/ T (whichisvalid
at large values of T) and then we have neglected the termswhich are exponentially small in amost all the
domain of variation of r and s.

3.4 Path integrals in the theory of gravitation, cosmology and string theory:
advanced applications of path integrals

This section contains severa rather involved topics on path-integral applications in modern theoretical
models such as quantum gravity, (super)strings, cosmology and black holes. The style of this section is
necessarily different from the rest of this book: each of these topics deserves a special book for detailed
discussion. The brief review in this section is intended only to provide a general understanding of the
problems without presenting all the technical details or supplying all the motivations. For discussions of
the details we shall refer the reader to the appropriate literature (where further references can be found).
Some acquaintance on the part of the reader with the basic factsfrom the differential geometry of Riemann
manifolds (see supplement V) as well as from Einstein’s general theory of relativity is assumed.

3.4.1 Path-integral quantization of a gravitational field in an asymptotically flat spacetime and the
corresponding perturbation theory

A complete theory of quantum gravity is still far from being complete. Moreover, at present, there is the
common belief that a complete and self-consistent quantum gravitational theory cannot be constructed
within the framework of local field theory (e.g., on the basis of Einstein’s general theory of relativity or
some modification of it) but requires more general theoretical concepts, including the quantum theory of
relativistic extended objects such as strings and membranes (see, e.g., Green et al (1987) and Polchinski
(1994, 1996)).

However, if we are interested only in phenomena with energies much lower than the natural
gravitational scale, namely the Planck mass, M, ~ 1.2 x 10'° GeV ~ 2.2 x 107> g, we can use the
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local field theory as an effective theory describing phenomena with relatively low energy. The theory
proves to be non-renormalizable and hence cannot be regarded as a fundamental one. But for low-energy
processes, the Planck mass My, serves as anatural ultraviolet cut-off scale. In this subsection, we consider
the path-integral quantization of this effective theory, while in the section 3.4.5 we shall briefly discuss
string theory.

It is worth stressing that, in both cases, the path-integral technique proves to be crucial for the
successful development of the theories.

<& Classical action for a gravitational field; gaugeinvariance and constraints

A gravitational field can be considered as a type of the gauge fields which we have discussed in most
of this chapter. Thus, we may approach the problem of the quantization of the gravitational field in the
framework of the general formalism for gauge-field quantization. This time, the gauge transformations
are general coordinate transformations (diffeomor phisms)

xH —s x* = fH(x)

(f+ being an arbitrary differentiable function) of the spacetime manifold under consideration. In the case
of an asymptotically flat spacetime, i.e. topologically trivial (topologically equivalent to R*) and with a
flat Minkowski metric at infinity, we can clearly separate local (gauge, unphysical) and global spacetime
symmetry transformations: the gauge transformations are diffeomorphisms which do not affect space
infinity (aflat region), while the global Poincaré group transformations act in the whole space, including
the asymptotic flat region, and form the global symmetry group (it is obvious that from the mathematical
point of view, the Poincaré transformations are a particular case of diffeomorphisms). These global
Poincaré transformations include time shifts, defining thereby the proper time variable and the physical
evolution of agravitational system with asymptotically flat spacetime.

According to Einstein’s general relativity theory (see, e.g., Dirac (1975) and Misner et al (1973)),
a gravitational field is described by a metric g, (x), which is a function of the spacetime coordinates
Xy, —00 < X, < oo, u = 0,1, 2,3 (due to the topological triviality these coordinates can be chosen
globally on the whole spacetime manifold). In this section we shall denote the flat Minkowski metric as

Nv' Ny o diag{+1, —1, —1, —1}, to distinguish it from the arbitrary non-flat spacetime metric g,,,, (x).
The condition of asymptotical flatness implies that the coordinates can be chosen so that

1
gu,v(x) m Ny + O <F> (341)
wherer = /(x1)2 + (x2)2 4 (x3)2. The Einstein action functional
1
= d*x /—gR(g,., 34.2
Syr 16”GN/ X v/ —9gR(9uv) (34.2)

can be cast into the form

1
Sy = 16262 / d*% [~T% 8, (v=9g"")+T%,3,(v/=99"") ++/—gg"" (T2, 15, T2 T )]. (34.3)

Here Gy isNewton'sconstant (whichwith i = ¢ = 1 hastheunitsof [length]? or [mass] ~2: Gy = M, 2),

g dzd det g, and R(g,,) is the spacetime curvature corresponding to the metric g,,,, (cf supplement V or
section 2.5), I'j;,, denote the Christoffel symbols:

def

F,ﬁv %gpa (augvc + av gp,o - aa gp,v) (344)
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and the matrix g*” istheinverseof g,,: g*° go = 8% Under theinfinitesimal coordinatetransformations
SxH = g (x) (3.4.5)

with the local (coordinate-dependent) parameters e#(x), the basic quantities transform as follows:

8" = — 0, 9" + g e’ + 9" et (3.4.6)

8T, = — " hTf, — T, 00" —T0, 8, + T}, 01€”. (3.4.7)

The variation of the action in the form (3.4.3) over I'}},,, considered as independent variables, gives the
equation with the solution (3.4.4). Therefore, we are free to work with the so-called first-order formalism,
where both g, and F{j,, are independent variables in the action (3.4.3), or to make the substitution of
expression (3.4.4) for the Christoffel symbols, which yields the action

1
- 2
167G3

Sor / d*x Lgr (W)

1 1 1
= oo / d*x <hp“aphWath = 5770, o b + 20770, Inhi, |nh> (3.4.8)
N

where we have introduced for compactness the quantity (covariant density)

e © g h Y dethe (3.4.9)

The action (3.4.8) corresponds to the second-order formalism.

To develop the Hamiltonian formalism, whihc in gravitational theories is also called the Arnowitt—
Deser—Misner (ADM) formalism (Arnowitt et al 1960) (see also, e.g., Misner et al (1973)), and to
congtruct the corresponding path integral, it is convenient to start from the first-order formalism, i.e.
from action (3.4.3) (smilarly to the case of Yang—Mills theories, cf section 3.2.3). Standard constrained
system analysis of the Lagrangianin (3.4.3) shows that it contains the non-dynamical variables I‘iOO, I‘iko,
rX (i, j,k = 1,2,3) which can be expressed via the dynamical variables h*V, T'%, making use of the
fo‘lowi ng secondary second-class constraints:

hikrg + h%ry + 8h'® =0
2hOr0 +h%Ord — k) +9h® =0

. . . : ) 3.4.10
h'®+hinrY + h%r|  +hor!, —hiorp =0 ( )
akhil +hivrl 4 hivel —hiiry <o,
The natural phase-space variables proveto be
: . . 1
q'* = hi%hk0 — pOpik gy = — =G (3.4.12)

hoo
and the Lagrangian, after substituting the solution of the constraints (3.4.10), takes the canonical form:

i0

1 h
2G m) To(X) — g i (x)} (34.12)

. 1 ,
La@*. mik) = 5= [nik(x)30Q'k(X) —HX) - ( h90(x)
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with the secondary first-class constraints:

To(x) = g') g (mikmjl — mijmk) + 93Rs =0 (3.4.13)
Ti (%) = 2[Vi (¥ mg) — Vi@ 7)1 = 0 (3.4.14)

(the coefficients in front of them in the Lagrangian play the role of Lagrange multipliers) and with a
Hamiltonian of the form _
H (x) = To(X) — 3 9kq'K(x). (3.4.15)

In these formulae, Rs denotes the three-dimensional curvature generated by the three-dimensional part
Ok, i, k =1, 2, 3 of themetric g,,, and g3 = det gik. The symbol V; denotesthe covariant derivative with
respect to this three-dimensional metric gix. We can check that the constraints T, (X) are in involution,
i.e. they satisfy characteristic property (3.2.57) of first-class constraints. Counting the degrees of freedom
gives two possible physical polarizations of the gravitational field: 6 (coordinatesq'') — 4 (constraints)
=2

<> Phase-space path integral for the gravitational field in an asymptotically flat space

To construct the phase-space path integral, let us choose the gauge conditions accompanying first-class
constraints (3.4.13) and (3.4.14), in the form (see Popov (1983))

Indetg®* =@(x) g*=0,i#k (3.4.16)

where @ (x) isafunction with the appropriate asymptotic behaviour: ®(x) —= constant /r. Thereader
— 00

may verify that the necessary condition (3.2.56) is fulfilled for such a choice. Now we are ready to write

down the phase-space path integral for the S-matrix:

3
/ [ [IPmik0Da™* 001 D2200 DA (%) [ | 81xa0)] det{Ty, xa)

i<k a=0
x exp {i / d*x [mikdoq K — A Ti —2%To — H (x)]} (3.4.17)
where we have denoted, for compactness,
xo=Indetg* —dx)  x1=092 x2=0¢" xz=0% (34.18)
0 1 i hOi

We do not discuss the boundary conditions for the fields mjk(X), q”‘(x): for an asymptotically flat
spacetime, the consideration is quite similar to that of Yang—Mills fields, which we discussed in
section 3.2.

<& Trangition to the Lagrangian path integral

Gaussian integration over the momentum variables i produces, as usual, the configuration path integral
(details of the calculation can be found in Popov (1983))

3
-t / I1 <h5/2(x) I1 dh’”(x)) [  51xa] det B exp(i Sy [h*1} (3.4.20)
X a=0

p=v
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where the operator B is defined by the Poisson brackets {T,, xa} of the constraints and the gauge
conditions; in fact det B is obtained from det{T, , xa}, in the process of Gaussian integration, substituting
the momentaik with their expressionsthrough the metric tensor (cf (3.4.11)) and multiplying by thelocal
factor 1/h%. Note that the integration measure in the path integral (3.4.20) contains an additional factor
[« h=5/2(x). Thisis the reason for writing it explicitly in (3.4.20) as a product over spacetime points
(instead of just the symbolical notationsDh#" (x)). Of course, the product over pointsisunderstood in the
sense of an appropriate regularization (discretization or truncated mode expansion). It is very important
that the local prefactor h—5/2 makes the measure in the path-integral gauge invariant.
The reader may explicitly check that operator B satisfiesthe equality

3
det B / Da(x) [ ] 8lxal = 1. (3.4.21)

a=0

According to the general theory of quantum gauge fields (see section 3.2), this means that integral
(3.4.20) goes over the classes of gauge-invariant fields (recall that in the case of gravitational fields, the
role of gauge transformations is played by diffeomorphic transformations of spacetime coordinates; the
corresponding infinitesimal transformations of the metric tensor have the form (3.4.6)).

Now, to present an expression for the configuration path integral in an explicitly relativisticaly
covariant form (but, of course, not generaly, i.e. diffeomorphically covariant form, because we have
already imposed the gauge condition), we can use the Faddeev—Popov trick in order to pass to a covariant
gauge condition. The most convenient such gauge is the so-called harmonicity condition:

dv(v/—gg"") = a*(x) (3.4.22)

where a*(x) is some fixed vector field. To thisaim, we introduce as usual the functional Ap[g*'], such
that

antg™1 [ D oo oo, - 2001 = 1 (3423
i

where (h#¥) T®) denotes the metric density subjected to the diffeomorphic transformation defined by
the function f (x). In fact, the integrand does not vanish only in the infinitesimal vicinity of the surface
defined by the §-functional. Therefore, it isenough to use only the infinitesimal form of the diffeomorphic
transformations and the integral can be explicitly calculated (asin Yang—Millsfields), with the following
result for the functional An[g**]:

An[g"’] = det By (3.4.24)

where the operator B, actson afield # (X) according to the relation:
(Bhe)* = 0, (h"*d,e™) — ;. (3,h* ™). (3.4.25)

After the transition to the corresponding «-gauge with the help of averaging over the field a* (cf
section 3.2) and after the introduction of the appropriate ghost fields in order to present the determinant
of the operator By in exponential form, we obtain the path-integral representation for the S-matrix of the
gravitationa fieldsin the form

S= % / ]:[ <g5/ 200 [ 1] dg“”(X))(]:[DC“DC“)

p=v

X exp{iS[g’”]JrI%/a“x F Lo/ Y P L +i/d4xc‘:“(§h)wc”}. (3.4.26)
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<& Elements of the perturbation theory

Expression (3.4.26) serves as a starting point for the development of perturbation theory for processes
which involve particles mediating gravitational interactions, called gravitons. To develop this theory, we
should separate the non-flat part of the metric either additively

h" = n"" + GnuH” (3.4.27)
or multiplicatively
h*" = n"? [exp{GND}]7". (3.4.28)

Here the matrix fields u#” or ®*V generate gravitons, while the Minkowski metric n** playstherole of a
classical background. The gravitational action now takes the form

Sr=9+ Gl (3.4.29)

n=1

where S is the quadratic form in the field u#” or ®*¥ and Sy, m > 2, are terms of the order m in u*¥,
'Y and their first derivatives. Now the reader may easily construct the Feynman diagram technique in
either of the previously mentioned parametrizations of the gravitational field. We present here only the
free propagatorsfor gravitons:

2
G = o "™ 40" 4 (@ = 20" ]

+ =am) I_(;x_l) [2k K nP? + 2kPK7 nHY — k'kPn? — KVkPpt? — k'K n"? — KK ]
(3.4.30)
and, for the ghost fields,
Ggh = —”k—f. (3.4.31)

It is clear that, because of the higher powers of the fields and their derivatives in action (3.4.29), the
corresponding quantum field theory of gravitation is non-renormalizable. This is, in fact, the centra
problem in constructing a self-consistent field theory of quantum gravity and it has induced persistent
attempts to construct more general and self-consistent (renormalizable or even finite) theoretical models.
As we have mentioned, it is assumed that the previously discussed quantum theory based on Einstein’s
general relativity, from the point of view of these more general models, plays the role of an effective
theory with arestricted range of validity (i.e. at relatively low energies E <« Mp). Although we cannot
say that we already have such a model which provides a complete theory of quantum gravity, there have
been remarkabl e successes on the way mainly related to the development of the superstring models. We
shall discussthese very briefly later in this section.

Now we pass to the discussion of some more profound (in comparison with the perturbation theory
in the asymptotically flat spacetime) problems of the effective low-energy quantum field theory of
gravitation.

3.4.2 Path integralsin spatially homogeneous cosmological models

In the preceding subsection, we discussed the perturbation theory for the quantum field theory of the
gravitational interaction based on the Einstein action. Although a complete theory of the 3 4+ 1 quantum
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time \ dimensions
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Figure 3.19. A schematic representation of a spacetime admitting afoliation by spacelike leaves.

gravity isnot yet available, many interesting non-perturbative results have al so been obtained. A common
tool used to achieve them is the path-integral representation of a quantum gravity transition amplitude and
the semiclassical approximation. Quantum general relativity has a number of peculiar features which are
not encountered in the quantum theories of non-gravitational interactions: for example, the absence of a
background geometry and suitable symmetriesto single out the vacuum and to select the Hermitian scalar
product of state vectors. It istherefore natural, as the first steps, to apply the study the ssimpler, truncated
models, both to test its viability and to gain insight into the type of technique that will be needed in the
full theory. Two main classes of such models exist:

e Four-dimensional ‘solvable’ spatially homogeneous cosmologies, i.e. cosmologies which admit
additional symmetries. In the classical theory, the presence of these symmetries enables us to
integrate the field equations completely. We shall see that their presence also ssimplifies the task
of quantization.

e Modelshased on (2+1)-dimensional general relativity (two spatial- and one time-dimensi on spaces);
these models serveto clarify several interesting and important points, both conceptual and technical.

In this subsection, we shall briefly present some applications of the path-integral techniques for the
quantization of models with homogeneous cosmologies. In the two subsequent subsections, we shall
discuss quantum processes in the (2 + 1)-dimensional general relativity with alternating spacetime
topol ogies and the path-integral derivation of the basic quantities in the black hole physics.

< Homogeneous cosmologies: minisuper space models

A spacetime is said to be spatially homogeneous if it admits a foliation by spacelike submanifolds
(see figure 3.19) such that the isometry group of the four-metric acts on each leaf transitively. If the
isometry group admits a (not necessarily proper) subgroup which acts simply transitively on each leaf,
the spacetime is said to be of Bianchi type. In this case, we focus on this subgroup and further classify
spacetimes using the properties of the corresponding Lie algebras. If the trace ), f@pa of structure
constants f 2y of the Lie algebra vanishes, the spacetime belongs to Bianchi class A, while if the trace
does not vanish, it belongsto Bianchi class B.
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A spatially homogeneous four-metricis said to be diagonal if it can be written in the form:

3
ds? = —N2(t) dt® + ) gii () (o')? (34.32)
i=1

where N(t) is the lapse function and «' is a basis of spatial one-forms which are left invariant by the
action of the isometry group. We can always change the time coordinate t to the proper time, t — t':
dt’ = N(t) dt, so that the coefficient of the first term becomes simply —1. The diagonal metric is then
characterized by the three components g;; (t) which are only functions of time. A key issue, however, is
whether the diagonal form of the metric iscompatiblewith the classical field equations. Thisisthe casefor
models for which the vector (or the diffeomorphism) constraints (3.4.14) are identically satisfied and only
the scalar (or the Hamiltonian) constraint (3.4.13) remainsto be imposed. We shall restrict ourselves to
this class of modelswhich belongsto Bianchi class A, since they admit a Hamiltonian formulation, which
is the starting point for canonical quantization. Since the trace of the structure constants f.2, vanishes for
these models, they can be entirely formulated in terms of a symmetric matrix na®:

f3e = egpcn?@ (3.4.33)

where eqpc is the completely anti-symmetric tensor. The signature of n2d can then be used to divide
class A models into various types: if n? vanishes identically, we have Bianchi type I; if it has signature
(0,0, +), we have type Il; signature (4, —, 0) corresponds to type Vlo; (+, +, 0) correspondsto Vllg;
(+, 4+, —) totype VIl and (+, +, +) to type IX.

e These types of spacetime manifold are called minisuperspaces (actually, the precise definition of
minisuperspaces includes important and rather involved refinements; we refer the reader for details
to, e.g., Ashtekar (1991) and Ashtekar et al (1993)).

A very useful Misner parametrization of the diagonal spatial metric exists:
giy =€ =123 (3.4.34)

Here x/ (t) are considered to be arbitrary functions of the time variable, parametrizing the metric (do not
confuse them with the spacelike coordinates of the genuine spacetime). We can use the ADM procedure
(see preceding subsection) to arrive at the Hamiltonian formulation of minisuperspace models. Since
gii(H) (i = 1,2,3) and X/ (t) are functions only of time, we actually deal with a guantum-mechanical
model with a finite number of degrees of freedom, not with a field theoretical system. The Misner
parametersx' serve as coordinates of the configuration space of this model and take valuesin the interval
(—00, 00), s0 that the space is topologically trivial. We will denote the momenta conjugate to x' by p;.
Thus, the fundamental Poisson bracket relations are {x!, pi} = 5'j.

<> Quantization of the minisuper space models

Thus, we may consider the minisuperspace models as quantum-mechanical systems with Hamiltonians of
the form (cf (3.4.13) and (3.4.15))

H=glppj+Vx) i=123 (3.4.35)

This is the general form of a Hamiltonian for a particle in a curved space, which we have discussed in
section 2.5. The essentially new feature of the gravitational minisuperspace models is that expression
(3.4.35) must now be considered as a constraint (cf (3.4.13)). The fact that a Hamiltonian becomes a
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congtraint (and hence vanishesin the physical sector) isthe general feature of gravitational systemswhich
appears due to the reparametrization invariance (i.e. absence of a unique time variable). This problemis
not applicable for the asymptoticaly flat spacetimes considered in the preceding subsection, since in the
latter case we can use the timelike coordinate in the flat region as a proper physical time.

To start the analysis of the minisuperspace models (see, e.g., Marolf (1996)), we first quantize the
Poisson brackets for x' and p;j. while completely ignoring the constraint. This provides an auxiliary
Hilbert space Haux. This spaceis called auxiliary because it contains much more than the physical states
that satisfy the constraints. In our case, we will take this space to be Hax = L%(R?), with the operators
X' (coordinates) and P (momenta) acting in the usual way.

The next step in the procedureis to ‘quantize’ the constraint H = 0. For our purposes, this simply
means that we choose some self-adjoint operator H on Hau, Which has the function H as its classical
limit. The usual ordering ambiguity is present at this level and we make no attempt to give a unique
prescription.

Now, if the spectrum of H were enti rely discrete, the implementation of the Dirac prescription
(Dirac 1964) would be straightforward: those eigenstates of H with zero eigenvalue would become the
physical states of our theory and the physical Hilbert space could simply be the H=0 eigenspace of
Hax. However, in typical cases, H also has a continuous spectrum at zero eigenvalue, for which the
corresponding eigenstates are not normalizable in the auxiliary Hilbert space but proved to be instead
‘generalized eigenstates’ of H, i.e. distributions. We shall, in fact, assume the spectrum of H to be
entirely continuous at H=0 many minisuperspace models can be formulated with a constraint having
only continuous spectrum at E = 0 and we restrict ourselvesto this case (e.g., the case of the Bianchi 1X
model).

In this situation and under a certain technical assumption concerning the operator H, the physical
Hilbert space is straightforward to construct. What we would really like to do is to project Hax onto the
(generalized) states which are zero-eigenvalue eigenvectors of H. Of course, since none of these states
is normalizable, thisis not a projection in the rigorous sense. Instead, it corresponds to an object s(A),
an analog of the Dirac §-function. Given the previously mentioned assumption on H, the object s(H)
can be shown to exist and to be uniquely defined. It exists not as an operator in the Hilbert space Haux,
but as a map from a dense subspace S of Haux to the space S’ of linear functionalson S (i.e. to the dual
space). The space S may typically be thought of as a Schwarz space; that is, as the space of smooth
rapidly decreasing functions on the configuration space. In this case, S’ is the usual space of tempered
distributions.

Then the key idea is the following. Although the generalized eigenstates of H do not lie in Hau,
they can be related to normalizabl e states through the action of the operator §( H). Thatis, the generalized
eigenstates |yphys) Of H with zero eigenvalue can always be expressed in the form §( ﬁ)lwo), where |yg)
isanormalizablestate in S C Haux:

Hilbert space of ~ Generdizedwave- | ~. ~
normalizable 3(H) functions H&(H)1y) =0 Physical subspace
functions (dlStrLPUtlonS) |1ﬁphys> € thys
1Y) € S C Hanx S(H)Iy)

This choice of |yo) is, of course, not unique and, in fact, we associate with a physical state |yphys) the
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entire equivalence class of normalizable states |v) € S, satisfying

S(A)IY) = [Yphys)- (3.4.36)

Each equivalence class of normalizable states will form a single state of the physical Hilbert space.

All that isleft now isto construct the physical inner product from the auxiliary Hilbert space. Naively,
the inner product of two physical states |¢phys) and |Yphys) May be written as (|8 (H)8(H)|v), where
|¢) and |v) are normalizable states in the appropriate equivalence classes. This inner product is clearly
divergent, asit contains [§( H)12. Instead, we define the physical inner product to be

<¢phys| thys) phys = (¢|5 ( ﬁ) | l/f>aux (3-4-37)

where the subscripts phys and aux at the brackets indicate the two different inner products. Note that
(3.4.37) does not depend on which particular states |¢), |v) € S were chosen to represent the physical
states |¢phys) and |Yphys). This construction parallels the case of a purely discrete spectrum: if Py were
a projection onto normalizable zero-eigenvalue eigenstates of H, we would have Pﬁ = Py. Note that
if H is the Hamiltonian for a free relativistic particle (see below, section 3.4.5), this positive definite
inner product corresponds to the Klein—-Gordon inner product on the positive-frequency states, but it
correspondsto minus the Klein—Gordon inner product on the negative-frequency states. The positive- and
negative-frequency subspaces are orthogonal as usual.

The algebra of observables commutes with the constraint H. These are the anal ogs of the gauge
invariants of classical physics. Each such operator A then induces the operator Kphys on Hphys through

AphyslVrphys) = S(H)Aly) (3.4.38)
where again |v) is any state for which [Yphys) = §(F)[¥).

<& What quantity should we derive a path integral for?

As we have learned, path integrals represent transition amplitudes that encode the time evolution of
quantum systems. However, for the cases we consider in this subsection, the Hamiltonian explicitly
vanishes on the physical Hilbert space. Thus, the operator e 'H! is just the identity. Nevertheless, the
physical states contain information that can be called dynamical. Thus, there should be some object, more
or less similar to a transition amplitude. It turns out that such an object is just the matrix elements of
the operator §(H) in Hau (Marolf 1996). That is, we have to compute (x;|8(H)|xi) where |x¢) and |x;)
are generalized eigenstates of the coordinate operators x'. Indeed, when one of the coordinates (say x1)
is considered to represent a ‘clock’ and when this clock behaves semiclassically this object, in a certain
sense, describes the amplitude for the ‘evolution’ of the state |x;) at the time xil to the state |x;) at the
time xfl. Here xs and x; represent the coordinates on the dlices through the configuration space of constant
values of x1.

It is now straightforward to represent this object as a path integral. To do so, consider the path-
integral expression for the operator e '"NH on H . The new parameter N serves as a forma ‘time’
variable. We then integrate N from —oo to oo to turn e='NH into § (H).

The resulting path integral isthen

. 1 [ N )
(X¢[6(H)[Xi) = E/ dN/DX(t)DD(t) eXD{I/O dt [px — H(x(1), D(t))]}

00 1
= %/ dN /DX(t)Dp(t) exp{i/ dt [px — N(t)H (x(t), p(t))]}
—00 0
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1

= Z/DN('E)DX(I)DIO(I)H5(N(t))A[N(t)]

1
x exp {i / dt [px — n(t)H (x(t), p(t))]} (3.4.39)
0

where ff"oo dN denotesan integral over the single variable N, while Dx(t) D p(t) denotesthe usual path-
integral measure. The second equality is obtained by a simple change of the time variablet — Nt, while
the last is obtained by converting the ordinary integral over N into the path integral with a simultaneous
fixing of al modes of the function N(t), except the constant one, and putting them to zero due to the
“gauge condition’ N(t) = 9N/at = 0 (represented by the 5-functional in the integrand). The functional
A(G) isthe associated Faddeev—Popov determinant.

< An example of path-integral representation for theinner product

Having derived a path integral for (X I8(F)|x;), it is of interest to see what form this distribution takesin
the simple cases where an exact analytic expression can be obtained.

The Bianchi | model is a minisuperspace describing spatially homogeneous spacetimes of the form
M = T3 x R which has afoliation by three-tori with flat Riemannian metrics (so that the tori form
spacelike hypersurfaces of M). In the diagonal version of this model, the metric is such that at each
spacetime point of M, three mutually orthogonal closed geodesics intersect and each encircle an arm of
the torus once. This system may be formulated on the configuration space Q = RS (i.e. on the space of
possible metrics (3.4.34) on M = T2 x R), with aconstraint of the form

Hei = 3(—pi + P + P (3.4.40)

In this case, the coordinate x* describes the volume of the three-torus T3, while the coordinates x? and
x3 describe the ratios of the lengths of minimal curves encircling the torus in different directions. It is
technically easier to consider a dightly modified model with an additional constant term in the constraint:

H=23(-pZ+ps+pi+md) (3.4.41)

for m? > 0. To have an ideaabout the form of the amplitudes (x ¢ |5(ﬁ) |Xi ) in minisuperspace models, we
consider only the case of the Hamiltonian constraint. The Hamiltonian (3.4.40) (or (3.4.41)) is unbounded
below. The same is true for the corresponding Euclidean action. Thisis a general property of quantum
general relativity. Since abounded Euclidean action is required for common argumentsinvolving analytic
continuation to Euclidean time, this property has raised the concern about how a path integral for gravity
might be defined and analyzed (Gibbons et al 1978). The minisuperspace models, being essentially
simpler than the complete general relativity, provide a good opportunity for studying this potentially
dangerous peculiarity of gravitational systems.

Note that the Hamiltonian (3.4.41) looks exactly like that for the free relativistic particle with massm
(we shall consider a proper relativistic particle in section 3.4.5). However, the physical contentsrelating
to the two Hamiltonians are quite different. This follows from the fact that the metric which defines
the constraint’s ‘kinetic term’ has a different interpretation in each of the two cases. A free relativistic
particle with p2 < Oisusualy interpreted as ‘traveling backwards in time', a process which physically
corresponds to the creation of an antiparticle. 1n the Bianchi-like models, a negative p; means only that
the torus decreases with the proper time, that is, that the universeis collapsing.

We now proceed to compute the integral

(x¢ |8 (H)|xi) = % foo dN (xileAN|x;) = %Re(/ooodN (Xf|e_iﬁN|Xi)> (3.4.42)

—00
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where Re denotes the real part. The operator e 17N is just e ™M*N/2 times the evolution operator for a
free non-relativistic particle (with unit mass). Since we consider matrix elements of the operator with a
purely imaginary exponent, the different signs of the ‘kinetic terms’ in the Hamiltonian (3.4.41) do not
lead to any trouble. As aresult, its matrix elements are readily seen to be (cf (2.2.59))

=IO 1 im? (X — Xi)?

for N > 0. The integration over N in (3.4.42) yields for (x; — x{)2 > 0 (see Gradshteyn and Ryzhik
(1980), formula 3.471)

(X¢[8(H) X)) =

— (1-n/2)
Vixe = x)? ] Kioyz-1 (/o — %) (3.4.44)

7 (2m)N/2 |: m

where Kn/2)_1 is the modified Hankel function of order (n/2) — 1. Similarly, for (x¢ — xi)2 < 0, wefind

(x¢ |8 (H)|xi) =

e — w2 132
_(Zn)n/2|: (X:n %) } Nin/2)-1 (m\/ —(Xf—Xi)2> (3.4.45)

(N(n/2)-1 is a Bessel function of the second kind). Note that, for —(x; — x)?m? > 1, the matrix
elementsare roughly cos(my/—(x¢ — x;)2). When (x; — x;)?m? > 1, the matrix elements contain only the
decreasing exponentia exp{—my/(X; — x;)2}. Thisoccurs even though the Euclidean action is unbounded
from below.

Recall that the matrix elements (3.4.44) and (3.4.45) describe an evolution (in the sense defined
before equation (3.4.39)) of the components g;; (t) of the metric (3.4.32), parametrized with the help of
the Misner parameters X;. This metric is defined on a spacetime without a priori assumed asymptotical
flatness but which is spatially homogeneous (more precisely, on a minisuperspace).

3.4.3 Path-integral calculation of the topology-changetransitionsin (2 + 1)-dimensional gravity

The path integral in general relativity is a sum over geometries, and it is natural to ask whether this
sum should be extended to include different topologies as well. Since realistic four-dimensional quantum
gravity isadifficult theory, to study this problem it is natural to ook again, asin the preceding subsection,
for simpler models that share important features with general relativity. The choice of a simplified
model depends on what questions we wish to ask and, as far as the dynamics of spacetime topologies
is concerned, a particularly useful model is general relativity in three spacetime dimensions. The classical
works in this area are by Deser, Jackiw and 't Hooft (Deser et al 1984) and Witten (1988) (as a review,
see, e.g., Carlip (1995) and further referencestherein).

The underlying conceptual issues of quantum gravity and some of the technical aspects as well, are
identical in 2+ 1 and 3+ 1 dimensions. But the elimination of one dimension greatly simplifiesthe theory,
making many computations possible. Moreover, general relativity in 2+ 1 dimensionsis renormalizable
(itis, in fact, finite), allowing us to avoid the difficult problems of interpreting path integralsin (3 + 1)-
dimensional gravity.

<& Preliminarieson the (2 + 1)-gravitation theory

Let us begin by examining the reasons for the simplicity of general relativity in 2 4+ 1 dimensions. In any
spacetime, the curvature tensor may be decomposed into a curvature scalar R, a Ricci tensor R, and a
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remaining trace-free, conformally invariant piece, the Wey! tensor C,,,,° (see supplement V). In2+1
dimensions, however, the Wey! tensor vanishes identically, and the full curvature tensor is determined
algebraically by the curvature scalar and the Ricci tensor:

Ruvpe = Gup Roo + Gvo Rup — Gup Ruo — Guo Rip — 3(9upGvo — Guo o) R. (3.4.46)
In particular, thisimplies that any solution of the Einstein field equations (without matter fields)
R, =0 (3.4.47)
isflat (i.e. Ru.p0 = 0), and that any solution of the field equations with acosmological constant,
Ruv = 2AQ, (3.4.48)

has constant curvature. Physically, a(2+ 1)-dimensional spacetime has no local degrees of freedom: there
are no gravitational wavesin the classical theory, and no gravitonsin the quantum theory. The vanishing
of the curvature tensor means that any point in a spacetime M has a neighborhood that is isometric to
the Minkowski space. If M has atrivia topology, a single neighborhood can be extended globally, and
the geometry is indeed trivial; but if M contains non-contractible curves, such an extension may not be
possible.

The convenient fundamental variablesfor asuitable formulation of the (2+ 1)-gravity are now atriad
e,2(x) (i.e. componentsof orthonormal frames) and a spin connection w,,2p. The Einstein—Hilbert action
can be written as

SJF = Z/M ea AN (d(,()a + %Gabca)b VAN (,()C) (3449)

where €@ = g,2dx* and »? = 3€3w,nc dx*. Technicaly, it is more convenient to deal with forms
and their wedge products (see supplement V) than with their componentse, ?, w,nc. Besides, to simplify
formulae, in this subsection we choose such units, that 16x Gy = 1. The action (3.4.49) is invariant
under local SO(2, 1) transformations (the three-dimensional analog of the L orentz transformationsin the
Minkowski spacetime),

56 — eabceorc
s? = dr? 4+ e wprc (3.4.50)

aswell as ‘local trandations',

se? =do? + eabca)bcrc
sw? = 0. (3.4.51)

Of course, Sy is also invariant under diffeomorphisms of M but this is not an independent symmetry: it
can be shown that when the triad e, isinvertible, diffeomorphisms are equivalent to the transformations
(3.4.50)—«3.4.52).

The equations of motion coming from action (3.4.49) are easily derived:

T3e w] = de* + ¢ wp A e =0 (3.4.52)

and
R%[w] = dw? + %eabcwb Awe = 0. (3.4.53)

The first of these determines w in terms of e. The second then implies that the connection w is flat
or, equivaently, that the curvature of the metric g, = eﬂaevbnab vanishes, thus reproducing field
equations (3.4.47).
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Figure 3.20. The simplest example of a topology-change manifold for gravity in (1 + 1)-dimensional spacetime: a
one-dimensional ‘universe’ g is splitting into two disconnected manifolds (‘universes') ¥ and %/, thereby changing
its topology; the two-dimensional manifold M corresponds to this topol ogy-change process.

< Path integralsfor topology-changetransition amplitudes

We areinterested in path integrals of the form

Klelaml = / e De expliSy[M]) (3454)

where M is amanifold whose boundary
IM=X1UX) (3.4.55)

isthedigoint union of an ‘initia’ surface 1 and a‘fina’ surface X,. (X1 and £2 need not be connected
surfaces.) In figure 3.20 we illustrate this with the help of the much simpler case of the (1 + 1)-gravity.
The reader may find concrete examples of topology-change manifoldsin (2 4+ 1)-dimensional gravity in,
e.g., Carlip and Cosgrove (1994). Visually, they are more complicated and we do not present them here.

The quantity K [w]|j4] represented by path integral (3.4.54) depends on the values of the dynamical
variables on the boundary surfaces 1 and X2 and has the meaning of transition amplitude (similarly to
the ordinary quantum-mechanical amplitude K (x, t|Xo, to)).

< Boundary conditionsfor the connection and triad for topology-change processes

Since we are dealing with manifolds with a boundary, we must first determine the appropriate boundary
conditions. The canonical quantization of the (2+ 1)-gravity onamanifold R x X showsthat the statesare
gauge-invariant functionals W[w; 2] of the spatial part of the connection, subject to the constraint that
beflat on . The corresponding boundary conditionsfor the path integral thereforerequire usto fix aflat
connection w; @ on 3 M. Recall that, if there existsamap from amanifold X’ toamanifold Y, f : X — ),
then any form A on Y inducestheform f*A on X. For example, for aone-form A = A, dy®, the form
f*Ais f*A = Aaaa‘cTOf dx', where y* = f%(x) isthe function locally defining themap X — ). Since
9M is aboundary of M, there exists an inclusonmap | : 9 M — M. We can then freely specify the
induced connection one-form | *w on 3. M, as long as the induced curvature | *R vanishes. The SO(2, 1)
gauge invariance of the resulting amplitude is formally guaranteed by the functional integral over the
normal component of w: at 0. M, w] 5 isaLagrange multiplier for the constraint

N2 = %eij (di € a_ 9j g2+ eabc(a)ibejc — Wic€jb)) (3.4.56)
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that generates the SO(2, 1) transformations of |*w. Observe that we must integrate over w, at the
boundary to enforce this constraint, i.e. we must not fix @, as part of the boundary data. Thisisin
accordancewith canonical theory, in which the wavefunctional sdepend only on thetangential (i.e. spatial)
components of .

The specification of | *w is not quite sufficient to give us a well-defined path integral. Asusual, it is
useful to decompose the fields to be integrated, in particular , into aclassical field @ that satisfies the
classical field equations, and a fluctuation 2:

w=0®+Q  do®24 %eabcwt()d) Ao® =0. (3.4.57)
Assuming now that @ exists, the boundary condition
1*Q=0

(the usual boundary condition for quantum fluctuations) can be recognized as part of the standard
Dirichlet, or relative, boundary conditions for a one-form. In order to impose complete Dirichlet
conditions, this should be accompanied by the relation

D% Q=0. (3.4.58)

Here, x isthe Hodge-star operator with respect to an auxiliary Riemannian metric h, which we introduce
in order to define a direction normal to the boundary, while D is the covariant exterior derivative coupled
to the background connection (@,

[_),Ba — d,Ba—i—Eabca)(c')b /\,3c.

Since (3.4.58) depends on the non-physical metric h, we must check that the final transition amplitudes
are independent of h.

In order to impose the boundary conditions for the triad €?, which are consistent with those for 2,
we observethat e, 5 acts as a Lagrange multiplier for the constraint

N2 = %eij (Bwj? — djwi® + eabca)iba)jc) (3.4.59)

and so, if we integrated over it at the boundaries, this would lead to a delta-functional s[N2] = §[1* R3]
at the boundary. But we have already required that | *w be flat, therefore such a delta-functional would
diverge. We avoid this redundancy by fixing e, at 9. M. Eventualy, we have to prove that transition
amplitudes do not depend on the specific value of e, , so this does not contradict the canonical picture
(states depend only on w?).

As with w, we can obtain additional boundary conditions by decomposing e into a classica
background field and a fluctuation

e=e®+E  de®a 4 @D A =0 (3.4.60)

where E; vanishes, i.e. | *(xE) = 0. Thisrestriction on E isapart of the standard Neumann, or absol ute,
boundary conditionsfor aone-form,

I*(«xE)=0  1**DE) =0. (3.4.61)
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< Calculation of the path integral

The next step in constructing the path-integral representation for topology-change amplitudesisto choose
gauge conditionsto fix the transformations (3.4.50)—(3.4.51). In order to do this, we employ the auxiliary
Riemannian metric h introduced earlier and impose the L orentz gauge conditions

*xDxE?=*D*xQ%=0 (3.4.62)

(the Hodge-star operation is defined with respect to the auxiliary metric h). For later convenience, we use
the covariant derivative D coupled to the full connection w rather than »(® in our gauge-fixing condition.
D and D agree at the boundary, however, so the gauge condition on €2 reduces to the second equation of
(3.4.58) on oM.

To impose (3.4.62) in the path integral, it is convenient to introduce a pair of three-form Lagrange
multipliersug and vy, and add the term

Syauge = —f (Ua A %D % E2 4 va A %D x Q%) (3.4.63)
M

to the action. It is not difficult to see that for the path integral to be well defined, u should obey relative
boundary conditions (I *(xD * u) = 0), while v should obey absolute boundary conditions (xv = 0
on dM). The latter restriction has again a rather straightforward interpretation: since we are already
imposing the gauge condition (3.4.58) on 2 at the boundary, we do not need the added delta-functional
8[xD * ] that would come from integrating over v at 9. M.

Asusual, the gauge-fixing process |eads to a Faddeev—Popov determinant, which can beincorporated
by adding aghost term

sghz—/ (f AxD % Df 4§ A %D % Dg) (3.4.64)
M

where f, f, g and § are anticommuting ghost fields. We must be careful again about the boundary
conditions: corresponding to restrictions (3.4.58) and (3.4.61) on Q and E, we choose f and f to satisfy
relative boundary conditionsand g and g to satisfy the absolute boundary conditions. The full gauge-fixed
action isthen

S= Sy + Sauge + Sh
= / [E? A (DR + Seanc2® A Q° + %D * Ua)
M

+ 2eapc€ @A QP AQC — 1P A %D % Qa— f A %D % Df —gA*D % Dgl. (3.4.65)

E and v occur linearly in (3.4.65), so we can first integrate over these fields to obtain delta-functionals.
There is one subtlety here: certain modes of E do not contribute to the action. These are nothing
but the familiar zero modes (see section 3.3.2) and, as usual, they must be treated separately in the
integration measure. The integral over the ‘non-zero modes of E will give a delta-functional of
DQa + SeancP A Q° + *D * ua. The zeros of this expression form a surface (€(s), @(s)) in the
field space, and if we expand the action around these zeros, only those fields infinitesimally close to this
surface should contribute to the path integral. Writing @ = Q + 2, we find that the relevant zero modes
of E arethose E for which

E=o. (3.4.66)

(Note that E depends on 2, so the order of integration below cannot be changed.) Performing the
integration over E and v, we obtain

D enys

/DQDUDE DveS= /DQDUDE 5[DQa + Seanc® A Q° + D # Uald[+D * Qal.  (3.4.67)
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Theargument of thefirst delta-functional vanishesonly when DxDxug = 0; assuming that the connection
w isirreducible, thisimpliesthat us = 0. The delta-functional then imposes the condition

DQa + 2eapc?® A Q=0 (3.4.68)

which can be recognized as the requirement that = »(@ + Q be aflat connection. This, in turn, allows
usto eliminate the term

/ %Gabc e(d)a N Qb AQC = —/
M

e(d)a AN [-)Qa = / I:-)e(d)a A Qa = 0
M

M
in (3.4.65).

We can now use the delta-functionals to perform the remaining integration over Q. By a
straightforward calculation, we can show that

DQS[DRa + eanc® A QF + D # Ua18[+D * Qa] = Dal|det’ L'~ (3.4.69)

where® = »@ + 2 ranges over the flat connectionswith our specified boundary values and the operation
L'® = xD; + D;* maps aone-form plus a three-form («, B) obeying relative boundary conditionsto a
one-form plusathree-form (xD;a + D¢, * B, D¢, * ) obeying absolute boundary conditions. Performing
the ghost integrals, we finally obtain
K da][dE det A 0 AT 3.4.70
wll = [ 10GIAE) o (34.70)
where A is the Laplacian %D, * D; + D * Dg# acting on k-forms and the superscripts ‘rel’ and
‘abs' indicate the function space (with relative or absolute boundary conditions) in which the respective
Laplacians act.

Now, by expanding one-forms and three-formsin modes of LT L., we may prove that

r © T A rel Arel A ab A ab
[(det'L_)(det'L )| = det’AEl)det’AE3) = det/A(l)sdet/A(g)s. (3.4.71)

Moreover, det' AT = det’' A%s, , since the Hodge-star operator maps any eigenfunction « of A% to
an eigenfunction xa of Af‘gi K with the same eigenvalue. Similar manipulations then show (Carlip and
Cosgrove 1994) that

K[w|3M]=/Dd)DET[cZ)],
_ (detATg)¥A(det Al§)Y? (det AFD)I(det AT
= — = — :
(det' A'S)) (det’ A%S)

T[@] (34.72)

In principle, integral (3.4.72) determines the transition amplitude for an arbitrary topology change
in 2 4+ 1 dimensions. In practice, however, the evaluation of the determinants is a rather complicated
problem. Sinceit is not directly related to a path-integral technique, we refer the reader to the original
papers (see Carlip and Cosgrove (1994), Carlip (1995) and references therein). This calculation shows
that path integrals representing spatial topology changein (2 + 1)-dimensional general relativity need not
vanish, but such topol ogy-changing amplitudes may diverge, thanks to the existence of zero modes E2 of
the triad €®. These divergences presumably reflect the appearance of ‘classical’ spacetimesin which the
distances measured with the metric g, = €,%e,a become arbitrarily large.

Clearly, no firm conclusions about topology change can be drawn without a much better
understanding of the overall normalization of amplitudesin (2 + 1)-dimensional gravity, which would
remove these divergences without breaking the symmetries of the original theory. This is a difficult
problem which still hasto be solved.
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3.4.4 Hawking's path-integral derivation of the partition function for black holes

In this subsection we return to the physical four-dimensional spacetime.

A spacetime domain with such a strong gravitational field that even light cannot leave it is called a
black hole (see, e.g., Misner et al (1973), Novikov and Frolov (1989) and Chandrasekhar (1983)). Black
holes are justly considered the most exotic objects in the Universe and their study is related to the most
fundamental problems of spacetime physics.

The content of this subsection could justly pertain to chapter 4, since we shall discuss mainly the
statistical and thermodynamical propertiesof black holes, but we prefer to collect together the applications
of path-integral techniquesin gravitational theory.

John Wheeler was the first to point out that the existence of black holes contradicts the basic
thermodynamical law, namely, the increasing entropy law, unless we attribute entropy to black holes
themselves. In the early 1970s, Bekenstein argued that black holes indeed have entropy (Bekenstein
1973). The argumentation is based on Stephen Hawking's theorem which states that the square Ay of
a black hole does not decrease with any classical processes, i.e. Ay behaves similarly to entropy. Two
years later, Hawking showed that black holes have temperature (Hawking 1975) and a few years later
these conclusions were confirmed and further developed by Gibbons and Hawking (1977), who used
path-integral methods to evaluate the black-hole partition function.

A number of authors have speculated that the large entropy of a black hole should be associated with
alarge number of internal states, hidden by the horizon (boundary of the black hole), that are consistent
with thefew external parameters(mass, angular momentum and electric charge) that characterizethe black
hole. Others have argued that the black-hole entropy can be associated with a large number of possible
initial statesthat can collapseto form agiven black hole. Path-integral analysis does not support either of
these views in an obvious way. Essential progress in understanding the origin of black-hole entropy and
its relation with microscopic quantum properties has only been reached very recently in the framework
of string-membrane theories and the fruitful idea of fundamental dualities in these models (see, e.g.,
Strominger and Vafa (1996), Horowitz (1996), Maldacena et al (1997) and references therein). We shall
not discuss any further thisinvolved and still intensively devel oping topic but confine ourselvesto a short
presentation of the path-integral derivation of the black-hole partition function, following Gibbons and
Hawking (1977) and Brown and York (1994).

< A short tour into black-hole thermodynamicsand statistical mechanics

Since we are going to discuss the black-hole partition function before chapter 4 which is devoted to
path integrals in statistical physics and since black-hole thermodynamics and statistical mechanics have
some unusual peculiarities, we start from a short presentation of the basic facts needed for the subsequent
derivation of the partition function.

Hawking's analysis shows that the temperature of a black hole, as measured at spatial infinity,
equals the surface gravity divided by 2. For a Schwarzschild black hole of mass M, it follows that the
inverse temperature 8 a infinity is 8t GyM (recall that the Schwarzschild horizon is a sphere of radius
Ry = 2GnM). On the other hand, the standard thermodynamical definition of inverse temperature is
B = 3dS(E)/dE, where S(E) isthe entropy function and E isthe thermodynamical internal energy. If the
mass M at infinity and the internal energy E are identified, then the relationship 0S(E)/dE = 87 GNyM
can be integrated to yield S(E) = 47 GZE? (plus an additive constant). This result is in complete
agreement with the prediction made by Bekenstein that a black hole has an entropy proportional to the
area of its event horizon.

The black-hole entropy S(E) = 4x Gﬁ, E2 is a convex function of E. Thisis characteristic for an
unstable thermodynamical system: the instability arises because energy and temperature are inversely



Path integral in the theory of gravitation 167

related for black holes. Thus, if fluctuations cause a black hole to absorb an extra amount of thermal
radiation from its environment, its mass will increase and its temperature will decrease. The tendency
then is for a cooler black hole to absorb even more radiation from its hotter environment, causing the
black holeto grow without bound.

These results can be reformulated within the context of statistical mechanics. First, consider the
canonical partition function Zg for an arbitrary system. In general, Zg is a sum over quantum states
weighted by the Boltzmann factor e #E. If v(E) isthe density of quantum states with energy E, then

Zp= / dE v(E)e FE (3.4.73)
(see also section 4.1). The partition function can a so be expressed as
Zp= /dEe"(E) (3.4.74)

wherethe‘action’ isdefined by | (E) = BE — S(E) and the entropy function S(E) isthe logarithm of the
density of states: S(E) = Inv(E). Asusua, theintegral over E can be evaluated in the stationary-phase
approximation by expanding the action | (E) to quadratic order around the stationary points E¢(8), which
satisfy

al

B B 9S
T 9E

0 =p-—
E, 0E

(3.4.75)

Ec
The Gaussian integral associated with a stationary point E¢ will converge if the second derivative of the
action at Ec is positive:

321

o 0%S
9E2

C

Ec
This condition shows that the entropy S(E) should be a concave function at the extremum Eg, in order
for the Gaussian integral to converge.

A further significance of condition (3.4.76) can be seen as follows. In the stationary-phase
approximation, the expectation value of the energy is (E) = —9InZ4/98 ~ Ec and the heat capacity is
C =9(E)/0p~ 1 ~ 9E¢/08~L. By differentiating (3.4.75) with respect to 8, we find

AE 92

1= IE9°S . (3.4.77)

9B IE2|E,

Therefore, the heat capacity is given by
-1 -1
328 921

C A —p2 —g2lZ_ ) 3.4.78
p <8E2 EC) p <8E2 EC) ( )

Thus, we see that in the stationary-phase approximation, the convergence of theintegral for the canonical
partition function is equivalent to the thermodynamical stability of the system (the concavity of the
entropy), which in turn is equivalent to the positivity of the heat capacity.

For ablack holein particular, the entropy S(E) = 4r Gﬁ E2 isnot aconcave function of the internal
energy and the integral for the partition function diverges.

The canonical partition function Z4 characterizes the thermal properties of thermodynamically
stable systems. For unstable systems, Z4 can give information concerning the rate of decay from a
guasi-stable configuration (such as a ‘hot flat space’ in the black-hole example), but it cannot be used to
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define thermodynamical properties such as expectation values, fluctuations, response functions, etc. Thus,
before the partition function can be used as a probe of black-hole thermodynamics, it is first necessary
to stabilize the black hole. It was recognized (see Brown and York (1994) and references therein) that a
black hole is rendered thermodynamically stable by enclosing it in a spatially finite ‘box’ or boundary,
with walls maintained at afinite temperature. In this case, the energy and the temperature at the boundary
are not inversely related because of the blueshift effect for the temperature in a stationary gravitational
field.

The stahilizing effect of a finite box can be explained as follows. Consider a Schwarzschild black
hole of mass M surrounded by a spherical boundary of radius R (do not confuse the boundary radius R
with the Schwarzschild radius Ry = 2GyM). The inverse temperature at infinity is 87 Gy M, while the
inverse temperature at the boundary is blueshiftedto 8 = 87 GyM /1 — (2GNyM)/R. On the other hand,
the inverse temperature isdefined by 8 = dS(E)/dE, where again S(E) is the entropy as a function of
theinternal energy E. The entropy of the black hole depends only on the black-hole size and is unaffected
by the presence of afinite box. Thus, theentropy isgiven by S(E) = 4r G2 M? asbefore, so that equating
the two expressions for inverse temperature, we find that

3(4r GZM?)

87M,/1— (2GNM)/R = s

In this case, the energy E and mass M as measured at infinity do not coincide. Equation (3.4.79) can be

integrated to yield
E= GNlR(l—\/l— (ZGNM)/R> (3.4.80)

where, for convenience, the integration constant has been chosen so that E — M in thelimit R — oo
with M fixed. The significance of this expression can be seen by expanding E in powersof GyM/ R with
theresult E = M + M?/(2R) + - - -. Thisshows that the internal energy inside the box equals the energy
at infinity M minus the binding energy —GnM?2/(2R) of a shell of mass M and radius R. The binding
energy —GnM2/(2R) is the energy associated with the gravitational field outside the box. Observe also
that the internal energy takesvaluesin therange0 < E < R/Gy.

By solving (3.4.80) for M as afunction of E, we obtain the entropy function

(3.4.79)

S(E) = 4G E?(1 — GNE/(2R))2. (3.4.81)

Note that the derivative dS/9E is a concave function of E (schematically depicted in figure 3.21) that
vanishes at the extreme values E = 0 and E = R/Gy. It followsthat 0S/0 E has a maximum B¢. For
B > Ber, the equation 8 = 9S/dE has no solutions for E. On the other hand, for 8 < B, there are
two solutions, E1 and Eo. At the larger of these two solutions, say, Ez, the second derivative 925 /9 E2
is negative and the stability criterion (3.4.76) is satisfied. At the smaller of these two solutions, E;, the
second derivative 925 /9 E2 is positive and the stability criterion (3.4.76) is violated. These considerations
indicate that for a small box at low temperature (8 > Bcr), the equilibrium configuration consists of a
flat space. For alarge box at high temperature (8 < Bcr), the stable equilibrium configuration consists
of alarge black hole with the energy E>. The unstable black hole with the energy E; is an instanton
that governs the nucleation of black holes from flat space. In the limit R — oo, the stable black-hole
configuration is lost and only the instanton solution survives.

<& Gravitational action with boundary terms

Since the black-hole stability condition requiresthe restriction of the spacetime by afinite box, we haveto
take care about the appropriate boundary conditions and compl ete the gravitational action with boundary
terms.
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Figure 3.21. Plots of the black-hole entropy S(E) and its derivative dS(E)/dE, in the presence of a finite box of
radius R.

Assumethat the spacetime manifold M istopol ogically the product of aspacelike hypersurfaceand a
rea (time) lineinterval, £ x | . Theboundary of X (thefinite‘box’)isdenoted9X = B; | = [t/,t”"] € R.
The spacetime metric is g, with the associated curvaturetensor Ry, and derivetive operator V,,. The
boundary M of M consists of theinitial and final spacelike hypersurfaces >’ and X" (cf figure 3.22) at
t’ andt”, respectively, and atimelike hypersurface 3B = B x | joining them. The induced metric on the
spacelike hypersurfacesat t' and t” is denoted by hjj, and the induced metric on ®B is denoted by yjj .
Consider the gravitational action

t//
S= i/ d*x V=g(R — 2A) + L[ @ik — 3/ d3x v=70. (3.4.82)
2¢ Jam K Ju K J3p
Here, k = 87 Gy and A is the cosmological constant. The symbol j;t,” d3x denotes an integral over the
boundary ¥” minus an integral over the boundary surface X’. Thefunction K isthe trace of the extrinsic
curvature Kij (see supplement V) for the boundary surfaces =" and X", defined with respect to the future
pointing unit normal u*. Likewise, © isthe trace of the extrinsic curvature ®jj of the boundary element
3B, defined with respect to the outward pointing unit normal n.
Under variations of the metric, the action (3.4.82) varies according to

3S = (termsthat vanish when the equations of motion hold)
t// B B 1 B//
+/ d3x P shy; +/ d3x 7'l sy — —/ d?x /o da. (3.4.83)
t/ 3B K Jp

The coefficient of sh;j in the boundary termsat t’ and t” is the gravitational momentum

pii _ zifh(KhiJ _ Ky, (3.4.84)
K
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Y(atel)

Figure 3.22. Schematic presentation of the spacetime manifold M and its boundary .M consisting of the initial %’
and final =" spacelike hypersurfaces and the timelike hypersurface3B = B x | joining them. The unit normal n to
3B and the normal u to =" at the boundary B” are also depicted.

Likewise, the coefficient of 834 in the boundary term at 3Bis
i 1 i i
' =—ZJ—_y(®yJ —eY). (3.4.85)

Equation (3.4.83) also includes integrals over the ‘corners B” = (hypersurface " at t”) N 2B and
B’ = (hypersurface at t’) N 3B, whose integrands are proportional to the variation of the ‘angle’
o = sinh™1(u - n) between the unit normals u* of the hypersurfaces at t” and t’ and the unit normal
n* of 3B (see figure 3.22). The determinant of the two-metric on B’ or B” isdenoted by o.

Let us foliate the boundary element 3B into two-dimensional surfaces B with induced two-metrics
oab. Thethree-metric y;j can bewritten according to the so-called Arnowitt—Deser—Misner decomposition
as

yij dxtdx) = = N2 dt? 4 oap(dx® + V3 dt) (dx® + VP dt) (3.4.86)
where N isthelapse function and V2 is the shift vector.

<& Theaction and related quantitiesin Lorentzian and Euclidean spaces

In the preceding sections and chapters we used both Lorentz (i.e. real time) and Euclidean (imaginary
time) forms of the path integrals, the latter being obtained by analytical continuation in the time variable.
In the case of a (gravitational) theory with a dynamical metric, the path integral, in general, includes
integration over the variety of all metrics with different signatures and strictly speaking, there is no
digtinction between the ‘Lorentzian action’ and the ‘Euclidean action’, or between the ‘Lorentzian
equations of motion’ and the ‘ Euclidean equations of motion’. Of course, a particular solution of the
classical equations of motion can be Lorentzian or Euclidean. But for the action functional itself, the
only distinction between Lorentzian and Euclidean is simply one of notation. We have aready used what
might be called Lorentzian notation: the action Sis defined with the convention that exp{i S} is the phase
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in the path integral; the volume elements for M and °B are written as ,/—g and /=, respectively; the
lapse function associated with the foliation of M into hypersurfaces . isdefined by N = ,/—1/g'. (The
lapse function that appears in (3.4.86) is the restriction of this spacetime lapse to the boundary element
3B. Itisdefined by N = ,/—1/y.) Therefore S, ./—g, /—y and N arereal for Lorentzian metrics and
imaginary for Euclidean metrics.

We can re-express the action in Euclidean notation by making the following changes. Define a new
action functional by Sg[g] = —i 9 g] so that the phase in the path integral is given by exp{—Sc}. We also
rewrite the volume elements for M and 3B as /g =iy/—gand /y =i /—y, respectively, and define a
new lapse functionby N = ,/1/g' = i,/—1/g't = iN. A bit of careis required in defining the square
roots. For example, the appropriate definition of ./—g is obtained by taking the branch cut in the upper
half complex plane, say, along the positive imaginary axis. Then the imaginary part of ./—g is negétive.
Correspondingly, the appropriate definition of /g is obtained by taking the branch cut along the negative
imaginary axis. Then theimaginary part of ,/g is positive.

It is aso convenient to redefine the timelike unit normal of the slices . In Lorentzian notation,
the unit normal is defined by u, = —N(S}L and satisfiesu - u = —1. A new unit normal is defined by

0, = N§!, = iNs!, = —iu, and satisfies G - G = +1. In some contexts, it is also useful to define a
new extrinsic curvature K ,,, in terms of the normal 0,,. K ,,, isrelated to the old extrinsic curvature K,
by Kuv = —(8), — U7U,) Vo, = i8], +U7U,)Veu, = —iKy,. Inturn, K, can be used to define a
new gravitational momentum P' that is related to the momentum of (3.4.84) by P') = —iP". Wewill,
however, continueto use the old notation Kjj and P'J.

In addition to the notational changes described here, we will aso define a new shift vector by
Vi = igy = iV;. This notation is different from the standard Euclidean notation in the sense that V;
is imaginary for Euclidean metrics. One of the motivations for this change is the following. Apart
from surface terms, the gravitational Hamiltonian is a linear combination of constraints built from the
gravitational canonical data with the lapse function and shift vector as coefficients. In conjunction with
the new notation N, V; for the lapse and shift, we choose to continue to denote the gravitational canonical
data by hjj, P", as previously mentioned. Then the constraints are unaffected by the change in notation,
and the Hamiltonian can be written as H[N, V] = —iH[N, V]. The overall factor (—i) that appearsin
this relationship is precisely what is required for the connection between the evolution operator (e71Ht
in particle mechanics) and the density operator (e~H# in ordinary statistical mechanics). When the
gravitational field is coupled to other gauge fields, such as the Yang—Mills or electromagnetic ones, it
is natural to redefine the Lagrange multipliers associated with the gauge constraints as well.

With our new notation, (3.4.82) becomes

. t//
S =—i/ d*x VIR — 2A) — '—/ d3x vhK +E/ d3x /7O (3.4.87)
2 Jm K Jyv K J3B
and (3.4.83) becomes

8Se = (termsthat vanish when the equations of motion hold)
t// B B 1 "
—i [ d3 Plsh; —i/ d3x 7'y + —/ d?x o 8a. (3.4.88)
t/ 3B k Jp

Here, we have defined @ = cos™1(0 - n) so that & = iSa. Thus, @ is the angle between the unit normals
@ and n of the boundary elementst” (or t’) and 3B.
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<& Functional integral

A path integral constructed from an action Sg is a functional of the quantities that are held fixed in the
variational principle §S¢ = 0. What are held fixed in the variationa principle are the quantities that
appear to be varied in the boundary terms of § Sg. The fixed boundary data for the action (3.4.87) are the
metric hjj onthesurfaces¥’, " att’ and t”, the angle« at the corners B’ and B”, and the lapse function
N, the shift vector V2 and the two-metric oan on 3B. In the path integral, the gauge-invariant part of the
dataon 3B corresponds to the inverse temperature 3, the chemical potential »? and the two-geometry of
the boundary B. A detailed analysis (Brown and York 1994) shows that these boundary data correspond
to the thermodynamical description of the corresponding black hole as a grand canonical ensemble:

e Theinversetemperatureis defined in terms of the boundary data on 3B by

B = / dt Nig. (3.4.89)

In geometrical terms, thisis the proper distance between t’ and t” as measured along the curvesin
3B that are orthogonal to the slices B.
e Thechemical potential is defined in terms of the boundary data.on 2B by

WP — fdt\73|B _ fdtVa|B
[dtN|g JdtN|g "

(3.4.90)

The physical meaning of the ‘ chemical potential’ w? is the proper velocity of the physical system as
measured with respect to observerswho are at rest at the system boundary B.

The path integral constructed from the action Sg is

olh’ . 0;a", & B, w, o] = /Dg e Seldl (3.4.91)
where h” and h’ denote the metricson X" and ¥/, while @” and &’ denote the angles at the corners B”
and B’. Thispath integral is the grand canonical density matrix for the gravitational field in abox B. The
grand canonical partition function, denoted E[8, w, o], is obtained by tracing over the initial and final
configurations. In path-integral language, this amountsto performing a periodic identification, so that the
manifold topology becomes M = £ x S'. Inaddition, @” and &' should be chosen so that the total angle
a” + &' equals r. Thisinsuresthat the boundary 3.M is smooth when theinitial and final hypersurfaces
are joined together. Thus, the grand canonical partition function can be written as

BB, w,0] = / Dhplh, h;a”,a'; B, w, o] ) (3.4.92

&'+a'=n

The right-hand side of this expression apparently depends on the angle differencea” — &’. However, we
expect that with periodic identification, @” — &’ is a pure gauge and in a more detailed analysis would be
absent from the path integral.

One can consider various density matrices and partition functions corresponding to different
combinations of thermodynamical variables, where one variable is selected from each of the conjugate
pairs. For example, in ordinary statistical mechanicsthe thermodynamically conjugate pairs might consist
of the inverse temperature and energy {8, E}, and the chemical potential and particle number {u, N}.
Then the grand canonical partition functionis E(8, w), the canonica partition function is Z(8, N) and
the microcanonical partition function (the density of states) is v(E, N). These partition functions are
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related to each other by Laplace and inverse Laplace transforms, where each transform has the effect of
switching the functional dependence from some thermodynamical variable (such as ) to its conjugate
(such as E).

When the gravitational field isincluded in the description of the system, all of the thermodynamical
data can be expressed as boundary data. In the path-integral formalism, the effect of the Laplace and
inverse Laplace transformsis simply to add or subtract certain boundary terms from the action.

<> Black-hole entropy

So far the partition function E[8, w, o] and the density of states v[e, j, o] were constructed as functional
integrals over the gravitational field on manifolds whose topologies are necessarily ~ x St. Thiswould
seem to be an unavoidable consequence of deriving E[S, w, o] and vle, j, o] from traces of density
matrices because the density matrices p are defined in terms of functional integrals on manifolds M, with
the product topology = x |. However, experience has shown that for ablack hole, the functional integrals
for the partition function and density of states are extremized by a metric on the manifold RZ x S? (S?
correspondsto the topol ogy of the black-holehorizon). Thus, we would expect the black-hole contribution
to the density of statesto comefrom apath integral that is defined on amanifold with thetopology R? x S2.
L et us discuss how the black-hole density of states can be related to the microcanonical density matrix.

We begin by considering the manifold M = ¥ x |, where X is topologically a thick spherical
shell (S? x 1). The boundary 3~ = B consists of two disconnected surfaces, an inner sphere B; and
an outer sphere B,. The boundary element 3B consists of disconnected surfaces as well, °Bj = Bj x |
and 3B, = B, x |. The results of the previous sections can be applied in constructing various density
matrices for the gravitational field on . We wish to consider the particular density matrix o, that is
defined through the path integral with the action

S = s _ﬁ d3x /o (Ne — V3jga) +£ d3x /o Ns?/2 (3.4.93)
Bo Bi

where ¢ is identified as an energy surface density for the system. Likewise, we identify j; as the
momentum surface density and s as the spatial stress. S(EBH) differs from the action Sz by boundary
terms which are not the same for the two disconnected parts of B. The contributions to the variation
5S2™ from 3B; and 3B, are

8SE log, = ﬁB_ PBx (Voo)sN — (Vo j)8V2 + oapd (N5 /2)) (3.4.99)
5B og, = ﬁ X NOWoE) + V(T o) — (NVOS™/Dbow).  (3495)

The choice of the boundary terms at the outer boundary element 3B, corresponds to the microcanonical
boundary conditions. At the inner boundary element 3B; none of the traditional ‘conserved’ quantities
like energy, angular momentum or areais fixed. Thus, they are allowed to fluctuate on the inner boundary
element while their conjugates, the inverse temperature, chemical potential and spatial stress are held
fixed.

We can show (Brown and York 1994) that the black-hole density of states v, [e, j, o] is obtained
from the trace of the density matrix p, = [ Dg exp{—S(EBH)[g]} along with the following specia choice
of data on the inner boundary element 3B;:

pd)
Il
o

(3.4.96)
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Va=0 (3.4.97)

Nvon®® =0 (3.4.98)

No— 27 (3.4.99)
Kt —t)

From the geometrical point of view, thisfollowsfrom the fact that conditions (3.4.96)—(3.4.99) effectively
transform the topology T x St into the required one, namely, R? x 2. In (3.4.99), (t” —t') is just the
range of the coordinatetimet.

The correctness of this prescription can be confirmed by considering the evaluation of the functional
integral for v,[e, j, o], where the data ¢, ja, oap ON the outer boundary 2B, correspond to a stationary
black hole. That is, let ¢, ja, oap be the stress—energy—momentum for a topologically spherical two-
surface By within atime slice of a stationary Lorentzian black-hole solution g of the Einstein equations.
In the path integral for v,[e, j, o], let usfix these data on each slice B, of the outer boundary 3B,. The
path integral can be evaluated semiclassically by searching for metricsthat extremizethe action S,(EBH) and
satisfy the conditionsat both 2B, and 3B;. One such metric will be the complex metric gc that is obtained
by substitutingt — —it in the Lorentzian black-hole solution g, . In the zero-loop approximation for the
path integral, the density of states becomes

vile, j, o]~ exp(—Se " [gcl). (3.4.100)

The calculation of the extremal action yields
B [gel = 2 / d%x /o (3.4.101)
K Bi

Theintegral that remainsis just the area Ay of the black-hole event horizon. Thus, in the approximation
(3.4.100), the entropy is

2
Sle, j, 01 =Invle, j, o]~ A (3.4.102)
K

With x = 87 Gy, thisisthe standard result S = A/ (4Gy) for the black-hole entropy.

It is worth noting that, as in quantum cosmology, a very promising investigative direction in
black-hole physics is the study of gravitation theories in low-dimensional, especially two-dimensional,
spacetime. Due to their relative simplicity, such models allow us to develop and probe new theoretical
ideas and methods in the theory of black holes. Besides, a strong motivation to study a particular class of
such theories, namely two-dimensional dilaton gravity, appears from the fact that the spherical reduction
(i.e. the assumption that all fields under consideration depend only on time and radial coordinates) of four-
dimensional Einstein gravity precisely produces a theory of this type. Path integrals prove to be a very
powerful tool for the consideration of this model. In particular, in some cases (even for gravitation with
matter fields) the path-integral method allows usto obtain exact non-perturbativeresults. For areview, we
refer the reader to Kummer and Vassilevich (1999).

3.4.5 Pathintegralsfor relativistic point particlesand in the string theory

Path integrals have found one of their most impressive and successful applications in the theory of
(super)strings. The latter nowadaysis the most viable candidate for the realization of the old dream and,
in asense, the ultimate aim of physicists: the construction of atheory of ‘everything'. More precisely, this
is acandidate for atheory describing in aunified way all fundamental interactions, including gravitation.
Itisimportant that string theory should fit very nicely into the pre-existing picture of what physicsbeyond
the standard model might look like. Besides gravity, string theory necessarily incorporates a number of
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previous unifying ideas (though sometimesin atransmuted form): grand unification, Kaluza—Klein theory
(unification via extra dimensions), supersymmetry and extended supersymmetry. Moreover, it unifies
these ideas in an elegant way, and resolves some of the problems which previously arose—most notably,
difficulties in obtaining chiral (parity-violating) gauge interactions and the renormalizability problem of
the Kaluza—Klein theory, which is even more severe than for four-dimensional gravity. Furthermore, some
of the simplest string theories give rise to precisely the gauge groups and matter representations which
previously arose in grand unification (that is, unification of strong, weak and electromagnetic interactions
onthebasisof asinglesimpleLiegroup). Thus, we can justly say that string theory isat |east a step toward
the unification of gravity, quantum mechanics and particle physics. However, it is worth mentioning that
at present, it is clear that even the original superstring theory (see the book by Green et al (1987) and
referencestherein) is not general enough to serve as such a unification theory: this ambitiousaim requires
a more general theory (sometimes called M-theory), including extended objects of higher dimensions,
such as membranes, as well as a more general formulation in which different extended objects would
appear as particular excitations. At the moment, only isolated results and ideas concerning such a theory
exigt (for areview see, e.g., Duff (1999)) and we shall not even dightly touch it in our book. Moreover,
the ‘original’ (super)string theory is also too extensive to be presented here even in a short version. We
shall only be able to introduce the reader to the very basic ideas and some results of this theory, stressing
the advantage of the application of path integralsfor their derivations.

To make this introduction easier, we shall start by rederiving the relativistic particle propagator
(Green function) with the help of a path integral, in the first-quantized formalism. Then the basic
techniques and the starting point in the string theory becomes a natural generalization of the result for
relativistic particles.

<& Propagator for arelativistic point particlein the fir st-quantized formalism

There are several forms of the action for arelativistic point particle in flat Minkowski space, al of which
lead to the same answer. The most straightforward oneis (see, e.g., Landau and Lifshitz (1987))

X 1
S[x(1)] = —m/ fds: —m/ du /napXau)xP(u) (3.4.103)
Xo 0

wheretheintegral istaken over the world-line of the particle with the endpoints xg, X and u isaparameter
(proper time) on the world-line, such that x2(0) = x§, x3(1) = x}. This form of the action has
some disadvantages, in particular, it is non-polynomial and highly inconvenient for a consideration of
the massless limit, m — 0. Therefore, we shall use a more suitable form of the action:

1 o a s
Six: N = %/ du (X "Ii‘lbx —m2N>. (3.4.104)
0

The reader may easily verify that both actions S and S lead to equivalent equations of mation (i.e. the
same classical physics). We use theindicesa, b, ... (and not w, v, .. .) to stress that the dimension of the
spacetimeis not necessarily equal to four. In order to prevent the determinant of the metric from depending
on the spacetime dimensionality, in this subsection we choose another signature of the Minkowski metric:
nap = diag{—1,+1,...,+1}. The action (3.4.104) possesses the reparametrization gauge invariance
with respect to the group G of one-dimensional diffeomorphic transformations

x3(u) — x2(f(u))

df (3.4.105)
N(u) — EN(f(U))
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for any differentiablefunction f (u) that leaves the endpoints of theinterval [0, 1] fixed, i.e. provided that
f0) =0 f(1) =1 (3.4.106)

The existence of the reparametrization invariance (3.4.105) shows that the action (3.4.104) can be

considered as an action for a one-dimensional gravity, the field N(u) playing the role of alapse function

(one-dimensional metric) and x2(u) that of the matter fields. The appearance of the determinant of the

reparametrization, u — f(u), in the transformation of N in (3.4.105) characterizes it as a density of

weight 1. The coordinate x2 is a density of weight zero, i.e. ascalar under coordinate reparametrizations.
The momenta conjugateto x2 and N are:

_3S 1
pa_(;)'(a_ N ab
PN=5R

respectively. Since the momentum conjugate to N vanishes identically, the Hamiltonian system is a
degenerate one with a primary first-class constraint. The secondary first-class constraint following from
the primary one py = 01is

8S

by = -2 = pan®pp + m? =H = 0. (3.4.107)

Thus, the Hamiltonian H for a relativistic particle vanishes at the surface defined by the constraints.
Because of this degeneracy, the phase-space Hamiltonian path-integral quantization should be based on
the phase-space path integral with constraints. However, in this section rather than entering into that
discussion of the phase-space integral, let us follow a different route and construct the configuration-
space path integral by geometric reparametrization-invariance considerations alone (see, e.g., Cohen et al
(1986) and Mottola (1995)).

The space X' of al configurations of the functions (x&(u), N(u)) may be treated by methods
borrowed from Riemannian geometry. At every ‘point’ X' = (xa(u), N(u)) in the function space we
introduce the cotangent space .Y, labeled by the basisvectorss X' = (§x&(u), §N(u)). Inthe Riemannian
geometry, we can introduce a metric on a space by defining a quadratic form, the line element, that maps
38X x 38X tothereal numbers, o

(89)% = Gij (X)sX s X1 (3.4.108)

The (infinitesimal) invariant volume measure of integration on the cotangent space, § X

d(8V) = ,/det Gij (X) d(8X1) x d(8X?) x - - - (3.4.109)

may be chosen to satisfy the Gaussian normalization condition,
/d(SV) exp(— 38X Gij (X)6X)} =1 (3.4.110)

and immediately induces an invariant volume measure on the full space X,

dV = /detGij (X) dXt x dX? x - - .. (3.4.112)

All the construction can be justified by a suitable finite-dimensional regularization (via discretization or
Fourier mode cutoff).
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To define the path integral for a system possessing a reparametrization gauge invariance, we have
only to define a quadratic inner product on the cotangent space §X. Then the construction of the
invariant measure on the function space of all configurations proceeds exactly along the lines of (3.4.108)—
(3.4.111). Sincethe path integral is specified by an invariant action functional and an invariant integration
measure, this procedure preservesthe classical reparametrization invariance under quantization. Then, by
identifying configurationswhich differ only by a reparametrization of coordinates, we may integrate only
over equivalence classes of coordinates, X' /G, in amanifestly gauge or coordinate invariant way.

Since both N and § N have weight one under (3.4.105), and

1
/ N(u)du = 7 (3.4.112)
0

isinvariant under reparametrizations (acting from the right), we can define an invariant inner product on

X by
1 N 2 1 N2
(SNISN) N dsef/ <5—> Ndu:/ G
o \N o N

def

1
(8X|8X)N / 5X21apdXPN du. (3.4.113)
0

These invariant products are unique up to a multiplicative constant which may be absorbed into the
normalization of the measure by the condition

/D(SN)exp{—%(aN, SN)n} =1 (3.4.114)
/D(ax) exp{—ii(ax, 5x)N} =1 (3.4.115)

A factor of i isinserted into the second Gaussian because the Minkowski metric is pseudo-Riemannian
with one negative eigenvalue in the timelike direction, so that the volume form in (3.4.111) remains
real. In Euclidean signature metrics, this factor would be absent. These definitions generate an invariant
functional measure on the full space X’ by equations (3.4.108)—(3.4.111). In order to pull this measure
back to an invariant measure on the quotient space of equivalence classes X'/, let us parametrize the
gauge orbits G by the set of differentiable functions f (u) satisfying the endpoint conditions (3.4.106).
Then an arbitrary lapse function N (u) may be written in the form

df 1 ¢
NUu) =17— f(u = —/ N(u) du. (3.4.116)
du T Jo
In other words, the gauge equivalence class M /G of al the functions N(u) is characterized completely
by the single parameter T defined in (3.4.112), while the gauge fiber G is coordinatized by f (u). Hence,
the integration measure on the quotient space is given by
[DN]

ﬁ[DX] = J(r)dr [Dx] (3.4.117)

where J isthe Jacobian of the change of variablesfrom N to (z, f). Theinvariant path integral isthen

Kra (X, 1; X0, 0) = / J(t)dt / Dx(t) &%, (3.4.118)
C{x(0)=xp,0;x(1)=x,1}
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To avoid confusion, it is necessary to stress that here we just factor out the volume of the gauge
orbits, while in the case of Yang—Mills theories (section 3.2) we integrated over chosen representatives
from each orbit (thisaim is achieved by the imposition of gauge-fixing conditions).

Our task now is to determine the Jacobian J. As follows from (3.4.116), a variation of the lapse
function N(u) can be written as

SN = (5r)g + td(éf)

N du du ’

After subgtituting this form into the inner product definition (3.4.113), the cross term between §t and

8f vanishes by using the endpoint conditions (3.4.106). Changing variables in the last term from u to
v = f(u) and defining

(3.4.119)

§() = (BHW, (3.4.120)

=f~1()

we obtain

2 1 2
GNISNYy = 87 z/ dv E(w) [—d—} E(v) (3.4.121)
T 0 dv?
after an integration by parts. Now, it isstraightforward to verify that the quantity & (v) (which parametrizes
infinitesimal diffeomorphisms) is invariant under diffeomorphism group transformations operating from
theright, i.e.
E(w) = &(v) f(u — fla()) (3.4.122)

but that it transforms as a density of weight —1 under the inverse diffeomorphism group transformations
operating from the left, i.e.

1
Ew) > o SEETw)  FW - W) = w. (34.123)
(%)
The only quadratic form in & that is invariant under both of these two transformationsis (see Polyakov
(1981, 1987))

1
(§16) = /0 dv (16)(v) (3.4.124)
provided that T remainsinvariant under the first transformation, but
dg—t(w)
-1 (3.4.125)
dw

under the second.
With the fully invariant inner product (3.4.124), we may define the integration measure on G by the
Gaussian normalization condition

[
/DS(r)eXp{—E(aa} =1 (3.4.126)
Returning then to our problem of evaluating the Jacobian J in (3.4.117), we find:

1= /D(aN)eXp{—iE(SNwN)N}

o
= /d(5r)J(t)/D§ expi—'(‘;? I 2r/2dv )g),
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(5[]

= constant x J (3.4.127)

where the last result follows by (1.2.227). Hence, the Jacobian J is a constant independent of .

Evaluating the propagator in (3.4.118) is now straightforward. The functional integration over x2(u)
with fixed endpoint conditionsis the same asthat for the free non-relativistic particle, and we are |l eft with
only asimpleintegral over the proper time t to perform:

~ . .
Kre (X, 1; X9, 0) = J / dr (27rif)*% eXD{ZL(X — X0)¥nab(X — X0)° — IErmz}
0 T

=J/00dr/ d’p exp ipa(X—Xo)a—i—T(panabpb+m2)
0 (2r)d 2

dip g p-(x—xo)

=) 2o (P+m2—io) (3.4.128)

provided that the constant J = i/2 and an infinitesimal negative imaginary part is added to m? to define
the t integral. With this normalization, expression (3.4.128) is recognized as the Feynman propagator
for the free relativistic scalar field, that is, Kig (X, 1; Xp, 0) = Dc(X — Xo) (cf (3.1.93)), which we have
obtained here by the path-integral treatment of the reparametrization invariant first-quantized particle
action (3.4.104).

Thus, relativistic particles, as well as non-relativistic ones, can be treated in the framework of the
first-quantized formalism. In order to describe particle interactions, we should include, together with the
free particle trajectories as depicted in figure 3.23(a), the merging and splitting trajectories as depicted in
figure 3.23(b). Itis seen, that with an appropriate choice of vertex operator, the set of thistype of trajectory
correspondsto the first-order contribution to the S-matrix (or four-point Green function) of the scalar ¢*-
theory. This observation can be generalized, and the whole perturbation expansion for any field theory
can be reconstructed in the first-quantized formalism. However, the approach has obvious shortcomings:

e itisnot clear how to consider non-perturbative phenomena(e.g., solitons, instantons, strong coupling
interactions, etc);

e we haveto postulate a specific choice of vertices and merging—splitting rules for trajectories which
can bejustified only by comparison with the corresponding field theory and

e inthe vicinity of the vertices, the trajectories (for example, of the type presented in figure 3.23(b))
are not a one-dimensional manifold (this fact complicates the geometrical description of such
‘branching’ trajectories).

Thesituation drastically changesin the case of string theory, where attemptsto construct straightforwardly
a second-quantized (analog of quantum field) theory meet essentia difficulties, while the first-quantized
theory provesto be well defined, self-consistent and powerful.

<& String basics

The most natural action describing the dynamics of strings, i.e. one-dimensional extended objects, hasthe
following form

S= — T x (Areaof two-dimensional world-sheet)

—T [ d’,/—detd, Xq9sXa o, =01 (3.4.129)
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Figure 3.23. A sample of afree particle trgjectory (a) and a sample of trgjectories of interacting particles (b).

and is called the Nambu-Goto action (theindicesa,b =10, 1, ...,d — 1 areraised and lowered with the
flat-space metric nap = diag(—, +, +, ..., +)) Thisgeneralizestherelativistic action (3.4.103) for apoint
particle, which is minusthe masstimestheinvariant length of theworld-line. For astatic string, thisaction
reduces to minusthe length of the string times the time interval times T, so the latter is the string tension.
Note that in the second line we are describing the world-sheet by X/ (x%, x1), using a parametrization x*
of the world-sheet, but the action is independent of the choice of parametrization (world-sheet coordinate
invariant). So the two-dimensional spacetime is the string world-sheet, while the spacetime is the field
space where the X* live, the target space of the map X* : world-sheet — spacetime.

Asfor relativistic particles, it is useful to rewrite action (3.4.129) in aform which removesthe square
root from the derivatives. Let us add aworld-sheet metric gq5(X) (o, 8 = 0, 1) and let

=T / d?x /g 9, X235 Xa (3.4.130)

where g = det gug. Thisiscommonly known as the Polyakov action because he emphasized its virtuesfor
quantization. The equation of motion for the metric determinesit up to a position-dependent normalization

Jup ~ 00 X?3pXa; (3.4.131)

inserting this back into the Polyakov action gives the Nambu—Goto action. The Polyakov action makes
sense for either a Lorentzian metric on a world-sheet, with signature (—, +), or a Euclidean metric, with
signature (+, +). Much of the development can be carried out in either case. We shall use the Euclidean
formalism.

In addition to the two-dimensional coordinate invariance mentioned earlier

X gx’P

X/ / — X o0 7=
XY =X o

Oeps (X)) = Gy5(X) (3.4.132)
the Polyakov action has another local symmetry, namely, the Weyl invariance, i.e. position-dependent
rescalings of the metric:

Ghp (X) = €7 X gag (X). (3.4.133)

To proceed with the quantization, we need to remove the redundant degrees of freedom from the
local symmetries. Noting that the metric has three components and there are three local symmetries (two
coordinate reparametrizationsand the scal e of the metric), it isnatural to do thisby imposing thefollowing
conditions on the metric:

Oup x) = 501/3. (3.4.134)
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Thisis always possible, at least locally.

After quantization, a string is represented by an infinite set of normal modes, i.e. the set of massive
quantum-mechanical states. The mass gaps Am? in this set are proportional to the string tension T. The
spectrum of abosonic string starts from a tachyon state (a state with imaginary mass) and hencethe purely
bosonic string theory is not fully self-consistent. The situation isimproved in the theory of superstrings,
that is, after the inclusion of fermionic degrees of freedom (introduction of two-dimensional fermionic
fields on the world-sheet of a string). These fermionic degrees of freedom are added in a supersymmetric
way and this providesthe ground state with zero mass (cf supplement V1), so that the undesirable tachyon
disappears from the spectrum.

Strings can be open or closed. The zero modes of the open strings consist of spin-1 particles
corresponding to Yang—Mills fields, while closed strings in the massless sector contain gravitons (spin-
2 particles) and, in the case of superstrings, gravitinos (spi n—% particles). At relatively low energies
(essentially less than the Planck mass scale ~10'° GeV), the massive modes effectively decouple and the
low-energy physics can be described by the effective local field theory for the zero modes (that is, by
supergravity or supersymmetric Yang-Millstheory).

In the first-quantized formalism, string interactions are described similarly to the case of point
particles, i.e. by path integration over world-sheets with appropriate topologies. Examples of such world-
sheetsin the case of afour-string interaction for open (b) and closed (c) strings are depicted in figure 3.24.
As we have already mentioned, attempts to construct a second-quantized string theory, i.e. a‘string field
theory’, have met critical problemswhich have not been successfully overcome so far. On the other hand,
the shortcomings of the first-quantized formulation pointed out earlier for relativistic particles, become
milder in the case of strings. In particular, it is seen in figure 3.24 that the world-sheets corresponding
to the string interactions are still two-dimensional manifolds (in contrast to the case of point particles)
and the arbitrarinessin the definition of the interaction termsin the string perturbation theory is strongly
restricted by the symmetries on the world-sheets, namely by the two-dimensional diffeomorphisms and
Weyl symmetries. Of course, this by no means removes the necessity of a non-perturbative formulation
of the (super)string theory. But the current hopesfor such a construction are connected with the so-called
M-theory (see, e.g., Duff (1999)) rather than with a straightforward generalization of alocal field theory
to the string case.

We have already pointed out that superstring theory is too extensive and versatile a subject to
present it in this book even briefly. Instead, to give the reader an idea about the typical calculations
and peculiarities of thistheory, we shall discuss the so-called Weyl anomaly in the simplest model.

<& The Weyl anomaly in two dimensions

A simple application of path integrals over string world-sheets is the calculation of the Weyl anomaly in
two dimensions. For thisaim, let us consider asingle free massless scalar field with the classical action,

Sulg. o] = / d?x /=99* dapdp . (3.4.135)

Thisisthesimplest variant of the string action (3.4.130) with only one space or time coordinate (X2 — ¢).
Action (3.4.135) is clearly invariant under general coordinate transformations. In addition, it is aso
invariant under Wey| rescalings, since when writing

Qup = e /-G =€7 (3.4.136)
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Figure 3.24. Generalization of the four-particle interaction world-lines (a) to the case of the four-string interaction
world-sheet for open (b) and closed (c) strings.

we observe that S[¢] is independent of o. The general coordinate invariance implies that the energy—
momentum tensor derived from S[¢] is covariantly conserved,

2 5909, ]
/=9 égaﬁ

while the Weyl invariance guarantees that this classical energy—momentum tensor is tracel ess,

VoT[g,01=0  T%[g,¢] = = 9%pdPp — %(a@zg“ﬂ (3.4.137)

5S
0up T 19] = €72 ~[g = €. ¢] = 0. (34.138)

We define the quantum effective action (in Euclidean time) by the covariant path integral

exp(—Surlg]) = / D¢ exp(—Sulg. 1) (3.4.139)

where the generally covariant integration measure over scalar fields must be defined such that

/ Dpexpl—3(plp)} =1  (plg) = / d?x v/=g¢*. (3.4.140)

Now, the point is that thisinner product and the corresponding integration measure over scalar fields D¢
are invariant under general coordinate transformations but not under Weyl rescalings. Hence, we must
expect the energy—momentum tensor of the quantized theory to remain conserved but have non-zero trace
(in contrast to its classical counterpart). Thus the so-called trace anomaly appears. Although this had to
be discovered by laborious calculations in the operator quantization method, it is actually obvious from
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the Weyl non-invariance of the covariant integration measure (cf section 3.3.4). Note that it is logically
possible to define a Weyl invariant scalar inner product and integration measure by leaving out the ./+g
in (3.4.140), at the price of making it not generally coordinateinvariant. In this case, the quantum energy—
momentum tensor would remain traceless, but it would no longer be conserved (thisis an analog of the
competition between the chiral and gauge symmetries; see section 3.3.4). If coordinate invariance is
assumed to be a more fundamental symmetry of nature than Weyl invariance, this possibility must be
rejected.

In order to calculate the Wey! trace anomaly, we perform the Gaussian integration in (3.4.139) and
obtain

1 1 /o dt
Silg) = 5 Trin(-0) — —3 / S rrexp(-0) (3.4.141)

where the second equality is the regularized definition (the so-called heat kernel definition) of ‘Trin’,
which introduces a cutoff on the lower limit of integration. This regulated form is most convenient for
evaluating the trace anomaly by varying Sy[g] with respect to o. Using

1 _
0= ——0,[/99%%05] = e 0 (3.4.142)
= V99" 0p

with O evaluated in the flat Euclidean metric, we find

_ oy 0t [ ]
af _ 20
Gop T =7 5050

_ —/oodt (x| exp{—t}|x)

= (X| exp{—el}|x)
11 R
_ 1 [_ + R, o(e)} (3.4.143)
A7 |e 6
where the expansion of the heat kernel for exp{—e[1} has been used in the last step ase¢ — 0, and
we have assumed that the operator (1 has no zero modes, so that the upper limit of the t integral does
not contribute to the trace. The background metric-independent, divergent first term is associated with
the infinite energy density of the vacuum in flat space, which can be regulated by the full ¢-function
method (see section 1.2.7), or simply subtracted from the definition of the energy—momentum tensor by
a normal-ordering procedure. The finite second term proportional to the Ricci scalar curvature of the
background metric g.s is the trace anomaly. Note that it indeed comes from the Weyl non-invariance of
theintegration measure (3.4.140), sinceif we used the Wey! invariant measure omitting , /g from theinner
product defined there, O in (3.4.142) would be replaced by /g0 = €?° [0 = O which isindependent of
o, S0 that the variation in (3.4.143) would then give zero identically. Therefore, the trace anomaly is a
necessary and immediate consequence of the covariant definition of the path-integral measurein (3.4.140).
In the conclusion of this section, we shall briefly discuss the case of an action with an arbitrary
number of matter fields. The general form of the trace anomaly of the energy—momentum tensor for
classically Weyl invariant matter in a background gravitational field is

Cm

T (matten) _ o R (3.4.144)
JT
C _ _
= 1 g2 (R - 200) (3.4.145)
247

in the decomposition gus = € Gup. The coefficient cy is defined by the number of matter fields:
¢m = (Ns + Ng) for Ns scalar and Ng (Dirac) fermion fields. From (3.4.143), this implies that there
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exists an effective anomal ous quantum action, such that

8 Snoml[ 9] _ C_m

b0 2an R 2H) (3.4.146)

Since the right-hand side of this equation is linear in o, we may integrate both sides immediately with
respect to o to obtain the anomal ous action:

_ _ o _ _

Swomld = €9 Gl = Snoml Gl + ﬁ d?x \/—g[—o Do + Rol. (3.4.147)

The action Sinom[g] Must be a scalar under general coordinate transformations and a functional of only

the full g,g, so that we may use this information to determine the o -independent integration constant
Sanom[ @] and write down the fully covariant but non-local form of the anomalous action:

Sirom = _gz—mn/dzx«/—g/dzx’,/—g’R(x)Dfl(x,x’)R(x’). (3.4.148)

The contribution of the world-sheets with a given topology to the string amplitudes is proportional
to the path integral (after the factorization of the volume of the gauge group of two-dimensional
diffeomorphisms)

/ Do Dy, (g = € g") exp{—S — Sunom) (3.4.149)

where glfv parametrize orbits of the gauge group of two-dimensional diffeomorphismsin the set of the
metrics (similarly to the parameter t in the case of therelativistic point particle, cf (3.4.112)). The number
of these parametersis finite and depends on the topology of the considered world sheet. The Jacobian J
appears, analogously to the case of point particles, because of the change of variables: g,., — {&., g}fv}
(&, are parameters of diffeomorphisms). Finally, So isthe classical action (3.4.130) or its supersymmetric
extension and Sinom iSgiven by (3.4.148). After extracting the Wey| parameter o from the Jacobian J, i.e.
the transition from J(g = € g') to J(g™), the coefficient ¢y, in front of the anomalous action changes
asfollows:
Cn—> C=Cmn—26= Ns+ NF— 26

so that the path integral (3.4.149) becomes
_ c
[ Po v 3@ e {—s: - C—senom} .
m

All the dependence of the integrand on the gauge parameter o (x) is concentrated in Sypnom. Thus, if
we want the quantum system to have the same number of physical degrees of freedom as the classical
prototype (that is, the quantum effective action does not depend on o (X)), we have to require that the
parameter c, called the central charge, be equal to zero

c=Ns+ Nr—-26=0.

In the case of a purely bosonic string (N = 0), this means that a self-consistent quantization can be
carried out only in a 26-dimensional spacetime (i.e. the number of the coordinates X8, a = 0,...,25
is equal to 26). In superstrings, fermionic degrees of freedom appear and the supersymmetry fixes their
number Nr, so that the central chargeis equal to zero at Ns = 10. Thus, non-anomalous superstrings
exist only in aten-dimensional spacetime.
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3.4.6 Quantum field theory on non-commutative spacetimesand path integrals

In the last subsection of this chapter, we shall discuss applications of path integralsin arecently emerged
branch of quantum field theory, namely, in the field theory of non-commutative spacetimes.

The standard concept of ageometric spaceis based on the notion of amanifold M with pointsx € M
locally labeled by afinite number of real coordinatesx* € R*. However, it is generally believed that this
picture of spacetime asamanifold M would break down at very short distances of the order of the Planck
length Ap ~ 1.6 x 10~33 cm. Thisimpliesthat the mathematical conceptsfor high-energy (small-distance)
physics have to be changed or, more precisely, our classical geometrical concepts may not be well suited
for describing physical phenomenaat small distances. No convincing alternative description of physics at
very short distancesis known, though different routesto progress have been proposed. One such direction
is to try to formulate physics on some non-commutative spacetime. There appear to be too many possi-
bilities to do this, and it is difficult to see what the right choiceis. There have been investigationsin the
context of Connes' formulation of the non-commutativegeometry (Connes 1994) and his approach to con-
struction of the standard model of electroweak and strong interactions (Connes and Lott 1990). Another
approach is based on the relation between measurements at very small distances and black-hole forma-
tions (Doplicher et al 1994, 1995). One more possibility is based on quantum group theory (see, e.g.,
Chaichian and Demichev (1996)). As shown by Seiberg and Witten (1999), the hon-commutative geome-
try naturally appearsin string theory. Thisresult providesuswith asolid background for the study of field
theories on non-commutative spacetimes which supposedly correspond to the low-energy limit of such
stringstheories. It isworth noting that the generalization of commutation relations for the canonical oper-
ators (coordinate-momentum or creation—annihilation operators) was suggested long ago by Heisenberg
(1954) in attempts to achieve regularization for his (non-renormalizable) nonlinear spinor field theory.

The essence of non-commutative geometry consists in reformulating, first, the geometry in terms of
commutative algebras of smooth functions, and then generalizing them to their non-commutative anal ogs.
One of the main motivations for studying QFT on non-commutative spacetimes is that the notion of
points as elementary geometrical entitiesis lost and we might expect an ultraviolet cutoff to appear. The
simplest model of this kind is the fuzzy sphere (see Berezin (1975), Hoppe (1989), Grosse et al (1997)
and references therein), i.e. the non-commutative analog of a two-dimensional sphere. As is known
from standard quantum mechanics, a quantization of any compact space, in particular a sphere, leads
to finite-dimensional representations of the corresponding operators, so that in this case any calculationis
reduced to manipulations with finite-dimensional matrices and thusthereis simply no placefor ultraviolet
divergences. Things are not so easy in the case of non-compact manifolds. Quantization leads to
infinite-dimensional representations and we have no guarantee that non-commutativity of the spacetime
coordinates removes the ultraviol et divergences.

In order to illustrate the main peculiarities of QFT on non-commutative spacetimes, we shall use
arelatively simple example of non-commutative geometry, namely, the Euclidean non-compact plane
with Heisenberg-like commutation relations among coordinates (Chaichian et al 2000). In discussing this
example, we shall see that physically meaningful quantities in non-commutative QFT are the correlation
functions (Green functions) of mean values of quantum fields on a non-commutative spacetime in
localized states from the Hilbert space of arepresentation of the corresponding coordinate algebra. These
localized states are the best counterparts of points on an ordinary commutative space, which ‘label’ the
(infinite number of) degrees of freedom of the QFT. Thus we must consider a quantum field in non-
commutative QFT as a map from the set of states on the corresponding non-commutative space into
the algebra of secondary quantized operators. We aso use this example for the study of symmetry
transformations of non-commutative spacetimes with Lie algebra commutation relations for coordinates.
The non-commutative coordinates prove to be tensor operators, and we consider concrete examples of the
corresponding transformations of localized states (an analog of spacetime point transformations).
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<& Two-dimensional quantum field theory on non-commutative spacetime with Heisenberg-like
commutation relations

A complex scalar field ¢(x) on aEuclidean plane P® = R? is a prescription
X = (X1, X2) € PP — ¢(x) € C

which assignsto any point x of the plane the complex number ¢ (x). In order to passto a non-commutative
plane and to the corresponding ‘fields’, we introduce in the two-dimensional Euclidean coordinate plane
P®@ the following Poisson bracket:

Xi,xj}=ej i,j=12 (3.4.150)

and extend it, by the Leibniz rule, to all smooth functionson P@ (here ¢ j isthe antisymmetric tensor,
e12 = 1). Thebracketsareinvariant with respect to the canonical transformationsx; — Mij xj +a;, where
Mij isan unimodular (i.e. detM = 1) matrix; a1, a; are arbitrary constants. In particular, the bracket is
invariant with respect to the two-dimensional group E(2) of isometries of P® formed by

(i) rotations: X1 — X1C0S¢ + X2Sin¢ X2 — X2C0S¢ — X1 SiN¢
N ) (3.4.151)
(ii) trandations. X1 — X1+ a1 X2 — X2 + ap.

In the non-commutative version PA(Z) of the plane, we replace the commuting parameters by the
Hermitian operatorsXi, (i, ] = 1, 2) satisfying the commutation relations

[%i, X1 =ir%; i,j=1,2 (3.4.152)
where A is a positive constant of the dimension of length. We realize the operators X, i, ] = 1,2ina
suitable Fock space F introducing the annihilation and creation operators

b= K +i%) &' L (X1 — i%2) (3.4.153)
o = o = - B
W 1 2 W 1 2

and putting

1
F=1In :—&*“O;n:O,l,...}.
{I ) 7 |0)
Here |0) isanormalized state satisfying &|0) = 0.

For all operators of the form

. 22 L
f= d%k f (k)" 3.4.154
(with a suitable smooth decreasing f (k)), weintroduce the ‘integral’ (linear functional) | ,[f1asfollows:
LI € T f = fo). (3.4.155)

Here Tr denotesthe trace in the Fock space and kX = kiX1 + koX2. The non-commutative analogs of field
derivatives 9;¢, i = 1, 2 are defined as
R i . .
0i ¢ = &ij ﬁ[xj N i=12 (3.4.156)

They satisfy the Leibniz rule and reduce to the usual derivativesin the commutative limit.
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In the non-commutative case, the Euclidean action of self-interacting scalar non-commutative
quantum field theory reads as

SMg, 1 = §M19, 611+ S19, 071 (3.4.157)

with the free part having the form

166" = L1@® @9 + mPeTel. (3.4.158)
Theinteraction part Syt of the action we shall discuss later (see (3.4.170) and below).

< Calculations by the method of operator symbols

The calculation of Green functions and other quantities in non-commutative QFT can be carried out
in a simple and natural way by the use of operator symbols (see section 2.3.1). In fact, transition
to the momentum representation ¢(X) — @ (k) in (3.4.154) is the first step in the construction of the
corresponding Weyl symbol. If, in addition, we now make the inverse ordinary Fourier transform:

pw(X) = / d2%k g(k)e (3.4.159)

(2 )?

we just obtain the Weyl symbol ¢y (x) of the operator ¢(X). Thus, the Weyl symbols or their Fourier
transforms (which playsthe role of the momentum representation for afield on the non-commutativeplane

Pk(z)) are in one-to-one correspondence with the set of fields (operators) ¢(X) on the non-commutative
space. This correspondenceis based on therelation

Trexp{ikiX} = 271 ~25@ (k).

As we mentioned in section 2.3.1, the trace of an operator f (X)it is expressed via its Weyl symbol as
follows:

1
Tr (%) = m/dzx fw () = L[ f®)].

Now any action for non-commutative QFT can be obtained from the corresponding classical action by the
substitution of the ordinary point-wise function multiplication by the x-product. For example,

TrY %, 9017 = /dzx (i, @wOOIM * (X, w0 Im
i

= /dzx (0 pw * 3i w) (X)

where {-, -}m isthe Moyal bracket:

g

1
{o, ¥im Zexy -y * Q).
Equivalently, we may use the Fourier transform @(p) of the Weyl symbol (momentum representation).
The existence of this field, depending on the commutative variables p; and p2, corresponds to the
commutativity of the momentum operators of the system considered.
The * second quantization’ in the Euclidean case amountsto cal culating the path integral over a set of
operator symbols which gives the generating functional Z[J] for Green functions:

Z[a =1 / D (X) exp{—Spw, J, *1} (3.4.160)
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where Sow, J, #] is the operator action (3.4.157) on the non-commutative space expressed in terms of
symbols or, in other words, the usual classical action in which the ordinary point-wise multiplication of
the fields is substituted by the star-product.

The Weyl symbol has some specia properties which makes it convenient for the calculations. In
particular, the explicit form of the x-product which makes the algebra of Weyl symbolsisomorphic to the
operator algebrais defined by the expression

_)\2 — >
(w * Yw) (X) = pw(X) exp{li i &V aj}ww(X)

o0 AN
= Zﬁ =1 g gimimg g ow) (B, - - Dj W)
m=0

= WO Yw(X) + O(W?). (3.4.161)

Thisimmediately showsthat a quadratic term in the non-commutative QFT action, written in terms of the
Weyl symbols, has the same form as that on the classical space:

)LZ - .. =
/dzx(gow*ww)(x)= /dZXQOw(X)eXp{—i? i &) aj}ww(x)

= / d2X ow (X)Yw (X) (3.4.162)

because &'l isantisymmetric. Therefore, the free action of the non-commutative QFT in terms of the Weyl
symbols has the same form as the usual QFT on commutative space. Higher-order (interaction) terms
contain non-locality, but the analysisin Filk (1996) shows that they do not remove ultraviol et divergences.

One more property of the Weyl symbols is their nice behaviour with respect to linear canonical
transformations: if we consider transformations (cf (3.4.151))

% = MijX; + b
the corresponding Weyl symbol transforms as follows
Pw(X) = pw(MX + b)

i.e. it transforms as an ordinary scalar field. This essentially simplifies our study of the invariance
properties of non-commutative quantum field theory.

When considering the Green functions Gy (X, ¥) = {(ow(X)ow(Y)), we should take into account the
fact that the value of an operator symbol at a point on the classical counterpart of a non-commutative
space has no direct physical or even mathematical meaning. Only the total function can be considered
as a symbol and this defines the corresponding operator. Thus the function Gy (X, y) has the meaning
of an operator symbol acting in the direct product H ® # of two copies of the Hilbert space in which a
representation of the coordinate algebrais realized. Now let us recall that in standard QFT, the points of
acommutative space (labeled by values of the coordinates x1, x2) are considered to ‘enumerate’ different
degrees of freedom of the field system. In non-commutative geometry there are no longer any points
but there are states in the Hilbert space of representations of a coordinate algebrainstead. Thus we must
consider aquantum field in non-commutative QFT as amap from a set of states on the corresponding non-
commutative space into the algebra of secondary quantized operators, so that the physically meaningful
object in non-commutative QFT is the mean values of the field operators. (¥ |¢p|W¥), |¥) € H. Of course,
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we can choose any complete set of states, but for clear physical interpretation and comparison with the
commutative limit, the set should satisfy the following requirements:

(i) the states must be localized in spacetime and
(ii) asthe parameter of non-commutativity A goesto zero, the states must shrink to a point.

This consideration shows that in order to convert the Green function Gy (X, y) into a physically
meaningful object, we must average it over some localized state. States which correspond to optimal
rotationally invariant localization around the point X = (x1, x2) of the plane are uniquely (up to a phase
factor) given as the coherent states |£) for the operators (3.4.153): |&) = exp{&éaT — £*&}|0) (|0) is the
vacuum state in the Fock space F; € = (X1 + ix2)/(~/21)); see (2.3.107).

It can be shown that

00 = (E1916) = [ X 0, (x = X)) (3.4.163)
with the smearing function

, 1 (X — x')2
(,())L(X—X)Zmexp —T .

In fact, pn(X) is the normal symbol (see section 2.3.1) of the operator ¢. Therefore, the physical Green
function G, (x, y) isgiven as

GL(X, y) = (en(X)en(Y)) = / d?x d2y wy (x — X ). (y — Y)Gw(X, ¥) (3.4.164)

and it represents a quantum average of the true field functional pn(X)en(Y) = (£191€)(¢|@I¢) (Where
£ = (X1 +iX2) /A2, ¢ = (Y1 +iy2)/A+/2). Similarly, any higher Green functions G, (X1, . .., Xn) are

obtained by smearing the corresponding Green functions Gy (X1, - - . , Xn).
The formal Green functions Gy (X1, ..., Xp) are, as a matter of rule, singular if some arguments
coincide. However, the physical Green functions G; (X1, ..., Xn) are regular due to intrinsic effective

smearing induced by the non-commutativity of the coordinates. In afreefield, the formal Green function
G\(,S) (X, ¥) = {ew(X)ow(Y))o is given by the standard formula

iK(X—y)
/ d?k e (3.4.165)

G\(AE))(X: y) = m

(27)?

According to (3.4.164) the corresponding physical Green function G(AO) = {en(X)eN(Y))o can be
straightforwardly calculated with the result

1 eik(x—y)—,\zkz/z
) _ 2
G, (x,y) = 202 /d k e (3.4.166)

This can easily be derived by use of the normal symbols. In this case the star-product for normal symbols
hasthe form

ONGE. &) x on(E. &) = on(E. &) exp(A® B 9 z)on(E. &) (3.4.167)
The free action in terms of the normal symbols takes the form

S f A2 [0 onGE. &) exp(r? D¢ 0 Joion(E. &) + mPen(E, ) expli? 3¢ 8 on(E. £)]

= Gnpt / A2 G (—k) (20K + m2)&-Ex Gy (ic). (3.4.168)
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Here ¢n (k) isthe Fourier transform of the normal symbol
_ 1 e
E6) = 5 [ @ d o)

and k = A(ky + ik2)/+/2.
Whereas GS\(,)) (X, y) islogarithmically divergent for x — y, the physical Green function isfinite:

—22k2/2
2, € /

1
) ©) B
G0yl =600 = s [ kg

depending only on adimensionless parameter a = Am characterizing the non-commutativity.

If the interaction is switched on, the problem of a perturbative determination of the full Green
function G, = (on(X)en(Y)) naturaly appears. Within perturbation theory the problem is reduced to
calculating the free-field averages of the type (on(X)en(Y) S} )o. However, now the problem of a non-
commutative generalization of the interaction term arises. If we choose, as a commutative prototype, the
(¢*@)2-interaction, the most direct non-commutative generalization is

(3.4.169)

S);]t[(ﬁ, @T] =g / d?x ON () * N (X) * pR(X) * eN(X). (3.4.170)

This action produces vertices containing factors &’¥*/2 on each leg with the momentumk;, i =1, 2, 3, 4,
plus additional phase factors exp{=ir2(ky x ko + k3 x ks)/2} (herek x p o &ijki pj). The Gaussian
factors e~*°K*/2 from the propagators are canceled in Feynman diagrams and the ultraviolet divergences
appear. Of course, calculations with different types of operator symbol, being different at intermediate
steps, give the same physical results. Note, however, that the normal symbols of the field operators on the
non-commutative plane have a much clearer physical interpretation since they are related (in fact, equal)
to the mean values over localized coherent states.

However, this is not the only possibility. Insisting only on a commutative limit condition,
lim—0 [, 71 = Sntle, ¢*1, the integrand in the non-commutative integral 1[¢T¢¢7¢] is defined
up to the operator ordering. Thereis no problem in modifying the operator ordering of the generators X1
and Xz in the integrand ¢T¢¢ 1% in such away that the vertices will not contain the exponential factors
exp{)»zki2 /2} onlegs. For example, we can use the normal symbolsto construct the free action but the Weyl
symbols to construct the interaction part. The resulting action will lead to ultraviolet-regular Feynman
diagrams. However, besides this pragmatic point of view, any deeper principle preferring such a different
ordering is hot known so far.

< Symmetry transformationson the quantum plane

Some subgroup of the group of the canonical transformations of the commutation relations for the
coordinate operators can be considered as a group of spacetime symmetry for non-commutative QFT.
Aswe discussed earlier, the degrees of freedom of non-commutative QFT correspond to a set of localized
(e.g., coherent) states. Thus a natural question about the behaviour of such states under the quantum
spacetime symmetry transformations arises.

The fact that a linear transformation preserves commutation relations for a set of some operators
means that the latter are tensor operators (see supplement 1V). It is worth separating the commuting from
the non-commuting operators:

(1) A set of commutative operators. For a general linear transformation of commutative operators
Xi — X/ = MijX; + bj, where Mjj, bj are ordinary c-number group parameters, the vector |1x)
remains an eigenvector of the transformed operator x” but with a shifted eigenvalue x’ = M;j xj +b;.
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(2) A set of non-commutative operators. tensor operator. A tensor operator A acti ng in some Hilbert
space H, has, by the definition, the property

A = Mij(@A; =U(@AU (g (3.4.171)

where Mjj(9) (i,j = 1,...,d) is a matrix finite-dimensiona representation of a Lie group G,
g € G and U(g) is a unitary operator in the Hilbert space . In general, the components A;
(i =1,...,d) of atensor operator do not commute with each other. Consider an eigenvector |1)a
of one component, say Ay, of the tensor operator. After the transformation, the eigenvector |1) o Of
the transformed component A isrelated to |A) a by the operator U(g):

Ma =0@Ina=Y_ arU@I1)alx)a. (34.172)
)\./

Then considering the action of transformed component Ka on theinitial eigenstate |A) A, we obtain

Aylna=U@AU (@2 a
= Y X A IU@IN AN A (34.173)
A‘/

Let us apply this consideration (well known in standard quantum mechanics) to the examples of
Euclidean and pseudo-Euclidean quantum planes. While ultraviolet behaviour in these cases is the same,
their properties with respect to the symmetry transformations are quite different.

We shall consider only the homogeneous part of the transformations. In the Euclidean plane, these
are rotations (3.4.151) (a one-dimensional subgroup of the group Sp(2) ~ SL(2, R) of the canonical
transformations). The corresponding creation and annihilation operators (3.4.153) are transformed
separately

&—e%a o' - e ]
so that the corresponding localized (coherent) states |¢) are transformed in very simple way:
&) — |€%). (3.4.174)

Thus the localized coherent states are transformed in the simple and physically transparent way. On
the contrary, coordinate eigenstates are transformed non-locally according to (3.4.173). Indeed, the
coordinates are transformed under Euclidean rotations by the formula

%1 — | = (cosp)Ry + (sing)%z = Uy U,
(3.4.175)

Py

% — % = —(Sn¢)K1 + (cosg)Xe = Uy%U L.
The explicit form of the operator U¢ iseasily found and provesto be
Uy = exp —§¢(X1 +X5)1-

Formally, this operator coincides with the evolution operator for a particle in the harmonic potential. We
have already calculated it by the path-integral method (see (2.2.79))

2T _ 1 i ii N2 2 _ /
(x1IUg|x1) = Tm o exp { 223nd [((X])© + X]) cos¢ 2x1x1]} . (3.4.176)
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Insertion of this kernel into the formulae (3.4.172) and (3.4.173) leads to the non-local transformation of
eigenstates of the operator Xy (eigenstates of X» are transformed quite similarly).

The situation is opposite in the case of the pseudo-Euclidean (Minkowski) plane. Now we have to
use another subgroup of the canonical group SL(2, R): two-dimensional Lorentz group SO(1, 1)

Xo = X{ = (€oshn)Xp + (sinhn)xy
_ (3.4.177)
X1 — Xj = (sinhn)Xo + (coshn)X.

It is convenient to use the light-front variables

1
Xt = —=(Xo £ X1).

V2
The boosts (3.4.177) now have the simple form
Xt — etxy

(n has the meaning of rapidity). On the non-commutative plane the coordinates satisfy the commutation
relations
[Ry, X_] = iA2. (3.4.178)

The corresponding annihilation and creation operators

1 1
6= ——(R +ig) at = — (R —iR) 3.4.179
w2 w2 ( )
are transformed non-trivially
& — &, = (coshn)& + (snhna’ = U,a0 -1
. 7 (3.4.180)
&' — & = (snhna + (coshma’ = U,a'0, L.

The explicit form of the operator 0,7 iseasily found and provesto be
U, = exp{—3n(@"H? - a?).
Thus now the corresponding localized coherent states are transformed as

&) — 1&;) = G, &)

The most convenient way of calculating the matrix elements (¢ |U,7 |&) usesthe path integral
. dz(r)dz - n 1
€i0,l6) = [ U%exp{gz(m + [ dr -2z - 5@ - zz(rm}.

ThisisaGaussian integral and, aswe know, itsvalueis given by the integrand at the extremum trajectory
of the exponent with the boundary conditions. z(0) = &, Z(n) = ¢. Theresultis.

2 2 - S0 .2
<¢|Un|s>=e><p{_ﬁ_ﬁ+ I

tanhn ¢ .
2 2 coshn 2 7 ,



Path integral in the theory of gravitation 193

Now to realize the properties of the transformed state |,)) = U,, |&) we can calculate it in the coordinate
representation (either x4 or x_). For example,
_ 1 (X4 — Ae71E)2
2 _ 2 _ _ A
(X467 = [(X|Upé)|° = Jre exp: a2

(here& = (&1 + i€2)/+/2). This expression shows that |&,) is also alocalized state and with respect to
the coordinate x. it is located around the point € 7/2ix Re¢ with the dispersion (Ae")? (while |€) is
located around +/21 Re¢ with the dispersion A2). Similarly, with respect to the coordinate x_, the state
|&,) islocated around the point e'v/20 Imé with the dispersion (1e)2.

< Remarks on the relation between an ultraviolet behaviour of QFT on non-commutative
spacetimes and topology

As we have mentioned, the transition to a non-commutative spacetime does not necessarily lead to an
ultraviolet regularization of the quantum field theory constructed in this space, at least in the most natural
way of introducing non-commutativity as presented above. In particular, QFT on non-commutative planes
with Heisenberg-like commutation relations for coordinates and a deformed plane with quantum Eq(2)-
symmetry still contain divergent tadpoles (Filk 1996, Chaichian et al 2000). However, in general, theories
which have the same ultraviolet behaviour on classical spaces may acquire essentially different properties
after the quantization. The reason is that quantization procedure is highly sensitive to the topology of
the manifold under consideration. Thus, while in classical spacetime the theories on a sphere, cylinder
or plane have ultraviolet divergences, in non-commutative spacetime the two-dimensional theories on
the fuzzy sphere and on the quantum cylinder do not have divergences at all. This can be traced to the
compactness properties of the spacetime in question:

e In the case of a fuzzy sphere, models contain a finite number of modes and thus all the usual
integrations are replaced by final sums and, consequently, no ultraviolet divergences can appear.

e In the case of a cylinder, we cannot a priori claim whether the quantum field theory is finite.
However, the non-commutativity of the spacetime together with the compactness of the space (circle)
lead to theintrinsic cutoff in the energy modes. Thisguaranteestheremoval of ultraviol et divergences
in the two-dimensional case (Chaichian et al 2000).

e  On anon-commutative plane (with a commutative limit which is non-compact in both directions)
with Heisenberg-like or even with commutation relations induced by quantum groups, the non-
commutativity of the spacetime does not lead to an ultraviolet-regular theory (Filk 1996, Chaichian
et al 2000).

Thus, the non-commutativity itself does not guarantee the removal of ultraviolet divergences: in
addition, global topological restrictions are needed—namely, at most one dimension (time) is allowed
to be non-compact, in order to achieve the removal of ultraviolet divergences of a quantum field theory
formulated in a non-commutative spacetime of arbitrary dimensions.



Chapter 4

Path integralsin statistical physics

In the first three chapters we have considered problems related to the physical behaviour of one or
a few particles (or some other physical objects which can be effectively described by one or a few
(quasi)particles as, e.g., the random walk model in polymer physics considered in chapter 1). Though
quantum field theory describes systems with an arbitrary number of degrees of freedom (an arbitrary
number of (quasi)particles), in chapter 3 we actually applied it to systems with a restricted and small
number of particles (e.g., for the description of the scattering process for a few particles). Another way
to express this fact is to say that in chapter 3 we have considered field theories at zero temperature.
However, the majority of realistic systems contain many identical (indistinguishable) particles such as
atoms, electrons, photons etc. An attempt to describe these systemsin terms of the individual trajectories
of all particles is absolutely hopeless. Instead, we are interested in the collective behaviour of systems
and describe them in terms of partition functions, mean values, correlation functions, etc. The methods
of derivation, analysis and calculation of such collective characteristics constitute the subject of classical
and quantum statistical mechanics.

In fact, the statistical properties of indistinguishable particles play an important role in the quantum
mechanics of a few particles as well. As is known from standard courses (and as we have previously
mentioned in this book), the Schrodinger wavefunction can be classified according to the irreducible
representations of the permutation group (corresponding to permutations of the quantum numbers of
different but indistinguishable particles). In more than two space dimensions, the representations which
definitely occur in nature are;

e completely symmetrical under the permutations;
e completely antisymmetrical.

The particles which always appear with symmetric wavefunctions are called bosons and those with
antisymmetric wavefunctions are called fermions, the names which we have already used in this book
many times. These features with respect to permutations of the two sorts of particle are in one-to-
one correspondence with the specific forms of the partition functions and, hence, with their different
collective behaviour: Bose or Fermi statistics. Note that, in general, systems of particles with more
general symmetry properties under a permutation group (e.g., obeying the so-called parastatistics, see
section 4.3.3) may exist. This possibility is especially important for the two-dimensional physics, where
it can be responsible for some interesting phenomena (in particular, the fractional Hall effect).

The problem to be discussed in this chapter is how to incorporate the statistical properties into the
path-integral formalism for the study of many-particlesystems. Asinthe preceding chapters, we start from
ashort review of the basic notions of classical and quantum statistical mechanics. Then, in section 4.2, we
discuss some applications of the path-integral formalismin classical statistical physics. These applications

194
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are mainly related to a convenient representation of the so-called configuration integral (entering the
classical partition function) for easier calculation. In section 4.3, we pass to quantum systems and in
order to establish a ‘bridge’ to what we considered in chapter 2, we introduce, at first, a path-integral
representation for an arbitrary but fixed number of indistinguishable particles obeying the Bose or Fermi
statistics. Aswe shall see, this problem is mathematically equivalent to the construction of path integrals
in arestricted (bounded) domain of the 3N-dimensional space (N is the number of particles, bosons or
fermions, in the three-dimensional space) with appropriate conditions depending of the type of statistics.
We shall aso discuss the generalization to the case of particles with parastatistics.

The next step (section 4.4) is the transition to the case of an arbitrary number of particles, which
requires the use of the second quantization, and hence, field theoretical methods. The consideration of
path-integral methods in quantum field theory in chapter 3 will be highly useful in the derivation of
the path-integral representation for partition functions of statistical systems with an arbitrary number of
particles. Moreover, this path-integral representation reveals similarity (at least formal) between the basic
objectsof classical or quantum statistics and those of the Euclidean quantum field theory (we have stressed
this similarity in the introduction).

A part of section 4.4 and two subsequent sections 4.5, 4.6 are devoted to some of the most fruitful
applications of the path-integral techniques to the study of fundamental problems of quantum statistical
physics, such asthe analysis of critical phenomena (phase transitions), calculationsin field theory at finite
(non-zero) temperature and in field theory at finite energy (describing systems with the microcanonical
distribution) as well as to the study of non-equilibrium systems and the phenomena of superfluidity
and superconductivity. One subsection is devoted to the presentation of basic elements of the method
of stochastic quantization, which non-trivially combines ideas borrowed from the theory of stochastic
processes (chapter 1), quantum mechanics (chapter 2) and quantum field theory (chapter 3), as well as
methods of non-equilibrium statistical mechanics (present chapter). The last section of this chapter is
devoted to systems defined on lattices. Of course, there are no continuous trajectories on a lattice and,
hence, no true path integrals in this case. On the other hand, we have learned that the path integralsin
guantum mechanics are defined through their discrete approximations. Therefore, the partition function
or generating functional for a system on alattice are, in fact, very close to those for continuous systems
and may serve as aregularization for the latter. Thus, the discussion of some principal ideas of the lattice
field theory in abook devoted to path integrals seems to be quite relevant.

4.1 Basic concepts of statistical physics

As in all preceding chapters, we start from a short review of the main facts and an introduction
of the main objects of statistical physics (see, e.g., Balescu (1975), Kittel (1987) and Feynman
(1972a)). The reader well acquainted with the standard formulae and statements of this subject
may use this section only for checking the notational conventions.

e The principal aim of statistical physics is to express the properties of macroscopic objects,
i.e. systems consisting of a huge number of identical particles (molecules, atoms, electrons
etc), through the properties of these constituents and their mutual interactions.

The existence of a large number of particles leads to specific statistical laws. The most
important of them is that a system in an arbitrary state and being in contact with a thermal
reservoir tends to turn into some equilibrium state. The properties of the latter are defined by
such general characteristics of the initial state as the number of particles, their total energy
etc. The process of transition of a system into its equilibrium state is called relaxation and the
characteristic time of this process is called the relaxation time.
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& Classical statistical systems

Let us consider a system of N particles assuming, for simplicity, that they do not have internal
degrees of freedom (as, e.g., spin). All statistical properties of this system are encoded in its
phase-space partition function w(x, p), X = {X1, X2, ..., Xan}; p = {p1, P2, - . ., pP3n}, the quantity
w(x, p) d¥Nx d3N p being the probability to find the coordinates and momenta of the particles of
the system in the vicinity d®Nx d3N p of the values x, p. If a system is not in the equilibrium state,
the partition function depends also on the time t.

A statistical description starts with the fact that the possible forms of the partition function
of a system in the equilibrium state can be determined on the basis of a general consideration
without going into the details of the system’s behaviour (i.e. without solving the equations of
motion of the system). There are three basic cases:

e Microcanonical distribution. In a closed system, the total energy is conserved and the points
in the corresponding phase space characterizing the states of the system are uniformly
distributed over a surface of a given value of the energy. This leads to the microcanonical
distribution:

we (X, p) = AS(H(x, p)— E) (4.1.1)

where H (X, p) is the energy of the system expressed in terms of the phase variables (i.e.
the Hamiltonian) and E is some value of it (A is a normalization constant).

e Canonical distribution. In reality, we mainly deal with some small subsystems of bigger
systems (strictly speaking, there are no absolutely closed (isolated) systems at all, except,
perhaps, the whole Universe). The distribution function of a subsystem is different from
(4.1.1) but does not depend on the concrete properties of the rest of the entire system,
called the thermostat. To obtain the distribution function of a subsystem from (4.1.1), we
should integrate over the coordinates and momenta of particles of the thermostat. This can
be done by taking into account the smallness of the energy of the subsystem in comparison
with that of the thermostat. As a result, we arrive at the canonical distribution

F-HX p

T } = exp{B(F — H(x, p)}. (4.1.2)

wc(X, p) = exp{
The quantity T in this expression has the physical meaning of the temperature of the system.
It is convenient to introduce the inverse temperature 8§ = 1/kgT (in units of the Boltzmann
constant kg). The normalization coefficient for the distribution (4.1.2),

2 E o pF) = /dxdp exp{—BH (X, p)} (4.1.3)

is called the partition function (it is also called the statistical integral or statistical sum) and
is defined by the condition

/d3Nx dp®N exp{B(F — H(x, p))} = 1. (4.1.4)

In distinction from the microcanonical distribution, the energy of a system obeying the
canonical distribution is not fixed but distributed in a thin interval around its mean value
(physically, this corresponds to the possibility of an energy exchange with the thermostat).
e Grand canonical distribution. If the particles of a subsystem may leave it and return through
a surface bounding the subsystem, the probability for the subsystem to be in a state with the
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energy H(x, p) and the number of particles N is given by the grand canonical distribution
wa (X, p) = exp{B(2 — H(X, p) + uN)} (4.1.5)

where u is the so-called chemical potential related to an average number of particles in the
subsystem and exp{8<2} is defined by the normalization condition

/d3’\'xd3N pwa(X, p) =1

that is
=@ ¥ exp(—pa =/d3Nxd3Np exp{—B(H (X, p) — uN)}. (4.1.6)

< Quantum statistical systems

In quantum mechanics, the distribution functions are substituted by the density operator (also
called the density matrix or_statistical operator) p. The mean value of a physical quantity
represented by an operator f is given by the expression:

~

(f)y=Trlpf]. (4.1.7)

The density operator in an equilibrium state and in the coordinate representation has the form

AOGX) =Y wn¥n ()Y (X) (4.19)
n

where ¥n(x) are the eigenfunctions of the Hamiltonian operator of the system under
consideration and wy, is the distribution of probabilities that the quantum system is in the state
with the energy E,. The exact form of this distribution depends again on the general properties
of the considered system:

e For closed systems with fixed total energy, volume and number of particles, the density
operator has the form R
om=AS(HR, ) — E) (4.1.9)

and the distribution is given by
wn = A(En, V, N) (4.1.10)

where A(Ep, V, N) is the statistical weight, i.e. the number of quantum states in the vicinity
of the energy Ej.
e For subsystems with fixed number of particles (canonical ensemble), the density operator
has the form: _
pc = 2 e PH (4.1.11)

the distribution being given by an expression analogous to (4.1.2):
wn = exp{B(F — En)} (4.1.12)

with the partition function (normalization factor):

Z = exp{—BF} = Zexp{—ﬁEn}. (4.1.13)
n
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In the operator form, this formula can be rewritten as
Z = Trexp{—BH} (4.1.14)

the operator H being the Hamiltonian of a system.
e For a grand canonical ensemble of quantum particles (i.e. for systems with varying number
of particles), the density operator takes the form:

s = &g PH-1N) (4.1.15)
(N is the particle number operator) and the distribution w, reads as
wn = exXp{B(€2 — En — Nn)} (4.1.16)

with the corresponding normalization factor

E = exp{—BQ) = ) exp{—B(En — 1Nn)) (4.1.17)
n
which is the grand canonical partition function.

<> Thermodynamical quantities and fluctuations

One of the main results of statistical mechanics is the clarification and statistical interpretation
of thermodynamical quantities. In particular, the exponent F of the canonical partition function
Z = exp{—pBF} has the thermodynamical meaning of the free energy of a system, while its
derivative with respect to the temperature (at fixed external conditions, e.g., volume of the
system) gives the entropy S.

S= 3T (4.1.18)
Simple manipulations allow us to derive from (4.1.18) a more general relation:

S == kB |n Ancont (4119)

where Ancont is the number of states which give essential contribution to the partition function.
The relation (4.1.19) is even valid for non-equilibrium states.

The cornerstone of statistical physics is the fact that the physical quantities X; characterizing
a macroscopic body are equal, approximately but with high precision, to their mean values.
However, due to the approximate nature of these equalities, the quantities X; have small
stochastic fluctuations around their mean values, characterized by the dispersion

def
DXi = ((Xi — (Xi)?). (4.1.20)
The correlation between two different quantities X; and Xj is characterized by the function

((Xi = (XiN(Xj = (XjN).

If Xj and X; are the values of the same physical quantity at the different space points labeled i
and j, the corresponding characteristic

((Xi = (XD(Xj = (X)) (4.1.21)
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is called the (space) correlation function. When the distance between two points grows, the
correlation tends to zero (usually exponentially, except the case of phase transitions), since the
fluctuations at distant points are independent.

The applications of statistical mechanics to the equilibrium behaviour of different
macroscopic systems are reduced to calculations of the partition function. Then, the
characteristics of a system can be easily derived in the same way as the different vacuum
expectation values in quantum mechanics and quantum field theory are derived from the
generating functionals.

< Classical limit and configuration integral

In the quantum-mechanical formulae (4.1.11)—(4.1.17), we assumed that the spectrum of a
Hamiltonian is purely discrete. This actually occurs in all systems in finite volumes. However,
because of the large number of particles, these spectra are very dense and it is technically
reasonable to pass to an (approximate) integration instead of the summation. Then, the partition
function takes the form

Z:/de 9(E) exp{—BE} (4.1.22)
0

where g(E) is the density of states at the energy E. In the classical limit, we can pass to the
integration in the formula (4.1.13) using the standard substitution 3", — [ d3Nxd3Np/(27h)3N
and dividing the result by N!, because a quantum-mechanical state is not changed under the
permutation of identical particles. In the classical limit this yields

g _ 1

~ (27h)3NN! / d*Nxd*N p exp(—H (x, p)}. (4.1.23)

Note that this expression differs by a factor from the purely classical counterpart given by (4.1.3).

The simplest many-body system is the ideal gas, a collection of a large number of non-
interacting particles. Due to the absence of the interaction the partition function can be computed
exactly and the expression for the free energy reads

1 L3N
F=——=In

= (4.1.24)
BN

where L3 is the volume of the ideal gas and

w2 Jonn2g/m (4.1.25)

is the so-called Boltzmann wavelength.

For more realistic models the problem of the calculation of the partition function is very
complicated. Hence, different approximation methods are required and for this aim, the path-
integral approach proves to be very fruitful and powerful.

The standard Hamiltonian for a system of classical particles with pair-wise interaction has
the form

o

N 2
HX, p) = Z <2p—rln + Vl(Xi)> + ZVz(Xi, Xj). (4.1.26)
i=1

i<j
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Here the function Vi(X;) represents a potential in an external field, while the symmetric function
Va(Xi, Xj) is a potential of pair-wise particle interactions. After the Gaussian integration over the
particle momenta, the partition function becomes

Q.

zh _
A3NN!

(4.1.27)

where again Ag = /27 h28/m and

/d3Nx exp{ - ﬁ(ZVl(xi) + ) Va(xi, xj))}. (4.1.28)

i<j

e

Q

This quantity Q is called the configuration integral; its calculation is the main technical problem
in classical statistical mechanics. As a matter of rule, it is impossible to calculate this integral
exactly in the case of a non-trivial interaction between particles.

The grand canonical partition function E can be written as

1]

|M8

2 exp(BuN)

N=0
N
-3 / dNx [ exp—pvaci [ + i) (4.1.29)
N=0 i

i<j
where Z(,\f') is the canonical partition function for N particles (it is assumed that Zéc') =1)and
gij = -1+ exp{—BVa(Xi, Xj)}. (4.1.30)

The factor at the configuration integrals in the series (4.1.29) proves to be zN/N!, where the
quantity

IS

iseﬁ“ (4.1.31)
A
B
is called the activity. An arbitrary term of (4.1.29) can be represented by a diagram with N
vertices and lines corresponding to the so-called superpropagator gij. This expansion and
the corresponding diagrams are called the Mayer expansion and Mayer diagrams. They are
analogous to the expansion in quantum field theory and the Feynman diagrams but for non-
polynomial, exponential interaction.
In the next section, we shall show that the use of a path-integral representation for the configuration
integrals allows us to present the latter in aform more similar to that encountered in polynomial quantum
field theory and, hence, to develop an expansion which is more convenient in many cases.

4.2 Pathintegralsin classical statistical mechanics

The calculation of the free energy F (see (4.1.13) and (4.1.24)) for the classical ideal gas can be carried
out explicitly and straightforwardly. Thisis not the case for the more general problem of evaluating the
partition sum for a non-ideal system. The main difficulty is the calculation of the configuration integral
(4.1.28). There are several approaches to analyze the thermodynamics of non-ideal systems with short-
range interactions. Mayer’s method, the correlation function method, the integral equation method, the
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renormalization group method, etc (see, e.g., Balescu (1975)). One more possibility is to represent the
classical partition functionin terms of a path integral and then to use for its calcul ation one of the methods
discussed in this book.

Consider a system of N identical particlesin avolume L3 interacting pairwise through a two-body
potential. Denoting the positions of particlesi and j by x; and Xj, their interaction energy V (xj — Xj)
can often be decomposed in a natural way into the sum of two terms:

V(X — Xj) = Vo(Xj — Xj) + Vi(Xi — Xj). (4.2.1)
For example, in many models, Vo denotes arepulsive hard core potential

) N )T if|Xi—Xj|§a
VO(X|—XJ)—{0 if|Xi—Xj|>Cf

(o0 € R isthe size of particles) and V1 denotes an attractive potential. If the latter isaweak (i.e. its depth
issmall compared to kg T) and along-distance one (the range of interaction is large compared to o), the
system is called avan der Waals gas. The classical canonical partition function Z( of such N particles
is given by amultiple integral of the type (4.1.27), (4.1.28):

z(cl)(N,,B, |_3) — /;_3d3xl...d3x,\, exp{ —,BZVO(Xi —Xj) —ﬁZVl(Xi —Xj)}. (4.2.2)

)\%N N! i<j i<j
The explicit calculation of thisintegral for large N and arealistic form of Vq(x) isvery complicated. Asa
step towards its solution, we may try to rewrite (4.2.2) in terms of apath integral and then either calculate
it exactly (if thisis possible) or use some approximation method.

The representation of the classical partition function in terms of path integrals is based on the
parametrization of the potential term V; by means of the auxiliary Gaussian random functions ¢ (x) with
zero mean value and with the correlation function

(p(X)(X)) = —BVi(x — X). (4.2.3)

We have discussed such Gaussian random functions (fields) in section 1.2.8. Making use of the results of
this discussion, namely formula (1.2.239), we can present the exponentia of the potential V4 in terms of
path integrals (Wiegel (1986) and references therein).

Note that the configuration integral with the potential Vp is simple and can be calculated
straightforwardly. Therefore, for brevity, we put Vo = 0. We also drop the subscript of potential Vi,
because in the case of avanishing Vo we haveV, = V.

<& Path-integral representation for the configuration integral

Let us consider an auxiliary functional

I[n] = m—lfp(p(x) exp{ - g/dsx d®X 9O H (x — X)p(x') + iﬁ/d3x n(X)w(X)} (4.2.4)

where
N = / De(X) exp{—%/d3x d3x o(X)H (x — x’)<p(x’)}.

H (x) is the kernel of some linear operator. We can choose the function H (x) so that it satisfies the
condition

/d3x’ V(x — X H(X = x") =8 — x"). (4.2.5)
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This condition meansthat V is the inverse operator with respect to H. Then, the usual calculation of the
Gaussian path integral (4.2.4) yields

exp{—ﬂ/z / dx d3x' n(x)V (x — x’)n(x’)} = 1[n(x)]
=‘ﬁ_1/D(p exp{,8/2/d3xd3x’<p(x)H(x—x’)<p(x’)+i,8/d3x n(X)(p(X)}. (4.2.6)

Themain aim of thissectionisto associate (4.2.6) with the statistical mechanicsof aclassical system.
For this purpose, we consider a system consisting of N = N4 + N_ charged pointlike particles (N+ and
N_ are the numbers of positively and negatively charged particles, respectively). The microscopic charge
density of the system can be written as

Ny N_
N = 86X —Xi) + Y (=X — X)) (4.2.7)
i=1 j=1

so that we obtain for the full energy

N, N_ Ny N_
U(X1...XN) :% Z V (X —Xj)+% Z V (X —Xj)—ZZV(Xi —Xj)
i#j=1 i#j=1 i=1j=1
= / d3x d3x" n(x)V(x — x)n(x") — (N4 + N_)V(0). (4.2.8)

Using (4.2.5) and (4.2.6), we can write the exponential exp{—BU (X1 ...Xn)} of the system through the
path integral:

N, N_ N, N_

exp{ - g( DOV =X+ Y Vi —Xx) =2> 3 V(X —xj))}
i£j=1 i£j=1 i=1j=1
=02t [ Dy ep| L. )+ it 429)

where we have introduced the scalar products

(wlHg) & / a3 d3x’ o () H (x — X )g(x')

def

{@In) / d3x o ()0 (X). (4.2.10)

< Example: Kac-Uhlenbeck—Hemmer model
For a particular form of the potential V; for a one-dimensional van der Waals gas of the type
Vi(y —¥) = —3wy exp{—yly — y'l} (4.2.11)

(the so-called Kac-Uhlenbeck—Hemmer model; w and y are the parameters of the model), the outlined
procedure leads to a Wiener-like path integral .



Path integrals in classical statistical mechanics 203

Note that the inverse of the correlation function of the auxiliary stochastic field, according to the
representation (4.2.3), provesto be

1 d? ) ,
(P(Y)py)) ﬂwy d—yz—y sy—vy)

(here we understand the correlation function to be the operator (4.2.5)). After substituting this formula
into (4.2.9), the derivative d2/dy? producesin the exponent the term

de 2
~ [dy [ =
[ o (dy)
so that the resulting path integral has a Wiener—Feynman—Kac-like form, the variable y playing arole
analogous to the time variable t in a genuine Wiener integral. For more details on this application of

path integrals and generating functionals, as well as for further references, we refer the reader to Wiegel
(1986).

<> Diagrammatic expansions

In order to illustrate the usefulness of the path-integral representation for the configuration integral, let us
consider the grand partition function for a plasma of charged particles at atemperature 1/8:

=) _ Z+ 2" 3N _
E NN '/d xexp{ D Vi xJ)} (4.2.12)
Nt N i#]j

where z, and z_ are the activities of positively and negatively charged particles, respectively. Using
(4.2.6) (or (4.2.9)), we can rewrite this equation as follows:

oo ZN+Z
== Y T L [ [ dixen Ot [ Dy ei-p 2ine + g, 4213)
Ny N_=0 T
We assume that the system under consideration is ‘neutral’, Ny = N_ and suchthat z, = z. = z.

Keeping in mind (4.2.7), we obtain:
2@ = m—1/D¢ exp (—,3/2((p|H<p) + 22y / d3x Cos(,Bgo(x))> (4.2.14)
wherezy = zefV(©)/2,

In order to calculate E approximately, we can use the usual perturbation theory for non-Gaussian
path integrals. To this aim, we introduce the auxiliary external source J and define

25131 = ‘ﬁ‘lfw exp {—ﬂ/2(¢IH<p> + / d Jw}
= exp { % / d3x d3x’ I(x)V (x — x/)J(x/)} (4.2.15)
so that the mean value of any combination f (¢(x)) of thefields ¢(x) is given by the functional derivative

(flOo)m =1 / Dyf (p(x))e Pl2eIHe) — ¢ (L> 23] (4.2.16)

53(X)

J=0
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Thus, for 2 we obtain the perturbation series

=(ch) _ii 27 /d3x i (—1)k 8 8 2 n,:(cl)[J]
ST 2 \"53%) =0

k=0

(4.2.17)

J=0

with the modified activity zy playing the role of an expansion parameter (an analog of the coupling
constant in quantum field theory).

Following the method used in the preceding chapter for quantum field theory, we can now represent
each term of the sumin (4.2.17) asadiagram with n vertices connected by k lines. Each vertex contributes
an integration over dx, while the factor —gV (rj —r;) correspondsto each line connecting the verticesi
and j.

Let us consider a vertex with | lines which begins and ends at the same vertex (recall that such
diagrams are called ‘tadpoles'; the corresponding factor is proportional to V (0)) and j non-tadpolelines
going out from it (external lines with respect to the vertex). The combinatorial prefactor in the integral,
corresponding to such a diagram, reads as

(2k)!
[1j12!

where 2k = 2| + j isthetotal number of lines going out from the vertex.
We can show that the summation over the number | of tadpole lines for a given vertex with afixed
number j of external lines, is equivalent to the renormalization of zy to its original value:

72y = V02, BV O/2,, _ 5 (4.2.18)

and the singular (local) factor exp{NBV (0)} in (4.2.9) just disappears.
Moreover, the summation of multiple lines connecting two vertices |eads to the substitution of each
set of diagrams with multiple lines by one diagram with one effective line, where the effective line is
associated with Mayer's superpropagator fij = e #V(i=fi) — 1 (cf (4.1.30)). Thus, the perturbation

theory derived from the path-integral representation of the grand partition function (4.2.14) is equivalent
to the Mayer series derived directly from (4.2.12) (cf (4.1.29)).

<> The expansion of the canonical partition function in powers of density

For a system with two sorts of particle with the densities p+ and p—, the partition sum can be written as

1 B
zh _ 7/d3NX ex { - = E Vii (rij — } 4.2.19
AN NG INC! P 2 i =) ( )

(Mg isdefined in (4.1.25)) and for the free energy F thisyields
—BF =InZ® = N, [1—Inxgps] + N_[1— Inigp_] — BFint

where Fi; isthe non-ideal part of the free energy:

3 3
dL’;l XN o-pu (4.2.20)

Fint(Ng, N_, B, L3) = In/—...

and L2 is the d-dimensional volume of the system.
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Now we rewrite exp{—BU} using (4.2.9):

& PP _ exp{¥v<0)} 9t [ Dy epl-p/2iHee" (4.221)

d3X+ i d3X_ i
— o(X4) —ip(X-)
Sl_N+In/ 3 @+ +N_In/ 3 € .

Since the path integral (4.2.21) is non-Gaussian, it can be calculated only in some approximation. For
example, for a dilute gas we can use the expansion in powers of the densities p, p_ or the quadratic
approximation (i.e. the expansion of S up to the second order in ¢). In the latter case, we have, for §
(we assume ¢ is oscillating around ¢¢c = 0),

Pt 2_p++p7/ d*q . 5
S 3190 > peselasl (4.2.22)

(¢(q) is the Fourier transform of ¢(x)), and for the non-ideal part of the free energy we obtain the so-
called Debye—Hiickel approximation:

BFm _ 1 [ dg 5 v
LS f SN+ (o + 0V (@) = (o + 0V (@) (4.2.23)

4.3 Path integralsfor indistinguishable particlesin quantum mechanics

Statistical methods are applicable to an ensemble of a large number of identical (or several types
of identical) particles. Before we develop path-integra methods for the derivation of statistical
characteristics (partition functions) in the framework of quantum statistical mechanics, let us discuss
peculiarities of path-integral representation for quantum-mechanical transition amplitudes in the case of
a few (a fixed number) indistinguishable particles. As we have learned in chapter 2, the calculation of
a quantum-mechanical transition amplitude for distinguishable particles can be carried out by using the
Feynman—Kacformula(for agenera classof scalar potentials). In order to treat identical particles, we can
exploit the fact that this method separates the problem of the potential, dealt with by the Feynman-Kac
functional, from the problem of a correct choice of a set of paths to be integrated over. This allows usto
consider the latter problem for a non-interacting system.

The consideration here is applicable both to real and imaginary time formulations of quantum-
mechanical processes. For definiteness, we shall use the imaginary-time formalism which leads to the
Wiener path integralsand Brownian-like particletragjectories. The propagator over the configuration space
can be obtained by the application of permutationsto alinear combination of standard Brownian processes
(quantum particle motion in imaginary time). The boson and fermion diffusion processes are fundamental
to this approach (Lemmens et al 1996) and their relation to the standard Brownian motion is settled
by restricting the configuration space of N particles to a specific domain, as well as by the appropriate
boundary conditions: absorption for the fermion diffusion process and reflection for the boson diffusion
process. In combination with the Feynman—Kac functional, this approach allows usto write the propagator
of the many-body Schrodinger equation as path integration with such boundary conditions (section 4.3.1).

In section 4.3.2, we shall apply this consideration to derive the partition function for fermionic and
bosonic particlesin the oscillator potential. In section 4.3.3, we shall expand our consideration to the case
of the parastatistics.
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4.3.1 Permutationsand transition amplitudes

The basic idea of this subsection is that for indistinguishable particles, the order in which the position
values are measured is irrelevant. This means that any permutation of the observed values should have
the same probability, so that we can restrict the domain of possible values to an ordered set of positions
X1 = X2 =2 -+ = XN.

We shall first illustrate the technique for two particles on a line and then generalize the result to N
particlesin the three-dimensional space.

<& Two particleson aline

Let x1 and xo be the coordinates of the first and second particle, respectively. The configuration space
is two-dimensional: (x1, x2) € R2. If the particles are identical, the configuration (x1, X2) and the
configuration (X2, x1) should indicate the same state. For fermions with parallel spin, the anti-symmetry
under interchange of the two particles is taken into account by the propagator

(X1, Xo|e™ ﬁ/h|x’1, x5) = K (x1, t[x}, 0)K (X2, t|x5, 0) — K (X1, t|x5, 0)K (X1, t|X5, 0) (4.3.1)

where K (X, t|Xo, o) is the propagator for a single particle. For convenience, we use here the Euclidean-
time formalism because later we shall be interested mainly in the corresponding partition function (cf
4.1.4). Let Dy define a domain on a line satisfying the condition x; > x2 > --- > Xn, where
X1, X2, . .., Xpn denote the possible components of the positions of the particles on a line. We consider
formula(4.3.1) for x1 > xz and x; > X5, so that (x1, X2) € D2 and (x], x;) € D2. The boundary of Dy is
defined by x; = x2 and denoted by 9 D, and the propagator (4.3.1) has the absor ption boundary condition

(X4 Xp| €xP{—t A/} X1, X2) [xy=x, = (X3 X5| XP{—tF /) X1, X2) [ —x; = O

on this boundary.
Similarly, the symmetry of bosons under permutations |eads to the propagator

(x1, x21€ /P x1, x5) = K (xq, t1x], 00K (X2, t]X5, 0) + K (X1, t[x5, O)K (X1, t|X5, 0). (4.3.2)

Again, propagator (4.3.2) isatransition amplitude of atwo-dimensional diffusion processon D2, but now
with reflecting boundary conditionson 3 D2. Asfor fermions, the required conditionsfor such atransition
amplitude are easily verified. Itisclear that (4.3.1) and (4.3.2) can be written respectively asadeterminant
and a permanent:

K(x1,t[x],0)  K(xg, t[x5, 0)

] , 433
K. 196, 0 K(xz. x5, 0) |, (433

(x1, Xale” "7 xq, xp) = ‘
where |alg with & = 41 refersto the permanent of a matrix a (for bosons) and |a|e with £ = —1 means
the determinant of a (fermions). (Recall that the permanent of amatrix a is defined by the following sum
over al permutations P:

perm(a) = |al+ = ZalP(l)aZP(Z) -+ -aNP(N)
P

see, e.g., Ryser (1963).) This observation allows us to generalize the process for two identical particlesto
aprocessfor N identical particles moving in one dimension: we need only substitute the 2 x 2 permanent
or determinant by a N x N analog. In this case, the form of the transition amplitude will automatically
take the boundary conditionsinto account.
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<& Transition amplitudesfor an arbitrary number of identical particlesin athree-dimensional space

The starting point of the construction is the projection of the transition amplitudes for distinguishable
particles on a transition amplitude which has the correct symmetry properties under permutation of the
particle positions:

K (X, t|X’,0) = ! Zs K (Xp,t|X',0) (4.3.4)
P

(K| is the propagator for indistinguishable particles). This projection is a weighted average over all
elements P of the permutation group. The weight is the character £ of the representation; i.e. éP = 1
for bosons, whereas for fermions £ P+ = 1 for even permutations P;. and £ P~ = —1 for odd permutations
P_. Here avector X belongs to the configuration space RN, with the x, y and z components of the jth
particleasthe (3j)th, (3j +1)th and (3] +2)th componentsof X. Itspermutations X p can be represented
as

Xp =PX (4.3.5)

where P isa3N x 3N-dimensional matrix with one 3 x 3 identity matrix on each block row and block
column, corresponding to each particle. For instance, for two particles, P can take one of the two forms

[13 O} [O 13}
O 13 1; O
with
1 0O 0 0O
13=[0 1 o} and Q=|:O 0 o].
0 0 1 0 0O

The transition amplitude for the non-interacting identical non-relativistic particles takes the form (cf
(2.2.41))

Ki(X,t|X’,0) = (27tht>3N/2 1 Zg { 2ht [PX — X'1T[PX — )'(’]} (4.3.6)

which can readily be rewritten as

KR AK.0) = (50" ep |- (% XX (i > P ep| P x})

<> Projection on even per mutations

We now separate the even permutations P, from the odd permutations P_, which can be written as
P_ = rP;, wherer is an element of the permutation group which interchanges two particles (i.e. r is
a transposition). Without loss of generality, we take the first and second particles. Using the fact that
&P+ = 1 for both fermions and bosons, we obtain

Zg exp[ PX - x} Z(exp{ P X - x/}+g exp[—rP+X x/}) (4.3.8)
Py

where r is a 3N x 3N matrix whose action is to interchange the coordinates of the first and the
second particle. Hence, r only differs from the identity matrix in the block column and the block row
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corresponding to these particles:

O 1z O O
3 O O - O
r=| 0O O 13 O (4.3.9)
o O O - 13
Notethat &" = —1 for fermions(sincer isan odd permutation) and £&" = 1 for bosons. Some elementary
algebrathen gives
P exp | TP %] = im
Y &P ep{PX X}—ZeXp{zm[lsN+r]P+X x}
P Py
opd 2™ 1an — P4 X - X'
X p >t 3N + X
r Im - o
+ & exp)—5o[lan — 1P X - X (4.3.10)

where 13y denotesthe 3N x 3N identity matrix (not to be confused with the 3 x 3 identity matrix, 13).

Since
I3 -13 O -+ O
_13 13 O O
In-r=| O O O -+ O (4.3.11)

o O O - O
we readily obtain o
I3y — P4 X - X' = (Xpy,1 — Xpy2) - (Xi — Xé) (4.3.12)

where xp, 1 and xp, > arethe coordinates of thefirst and seco_nd particlesin P, X. Thevector x j denotes
the usual three-dimensional position vector, in contrast to X, which is a vector of dimension 3N, as
previously described.

& The parity of K (X, t|X’, 0) and of its components

Thetransition amplitude for N three-dimensional non-interacting identical particlesis given by
m \3N/2 m - - _ _
— —— X - X+ XX
27rht) d o Xt )}

x % Zexp[z—r;;[lsN +rP, X - )_(’}

+

ZCOSh(

K (X,t|X, 0) = (

1m , ,
EE(XP+,1 — Xp,,2) - (X] —X5) | for bosons
x (4.3.13)

1m .
2sinh (EE(XaJ — Xp,2) - (X] — x’z)) for fermions.

This form of the amplitude allows us to answer the questions about the state space and boundary
conditions. Indeed, the decompositions

cosha- b = coshayby coshayby coshazb, + coshayby sinhayby sinhazb,
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+ sinhayby coshayby sinha,b; + sinhaxby sinhayby cosha;b, (4.3.14)
sinha- b = sinhayby sinhayby sinha;b; + sinh ayxbyx cosh ayby coshazb,
+ coshayby sinhayby coshazb; 4 coshaxby coshayby sinha;b, (4.3.15)

allow usto rewrite the transition amplitude as a sum of four terms K, (X, t|X’,0; £); £ =0...3:
3
K (X, t|X,0) = Z Ki(X,t|X',0; 0). (4.3.16)

=0

Here the summation index ¢ is associated with combinations of given parities (with respect to the
interchange of the indicated coordinates of the three-dimensional space):

Parity of K{(X,t|X’, 0; ) for bosons

index: =0 ¢=1 (=2 (=3

x-coordinate  even even odd odd (43.17)
y-coordinate even  odd even  odd
z-coordinate  even odd odd even

Parity of K;(X,t|X’, 0; £) for fermions

index: =0 ¢=1 (=2 (=3

x-coordinate  odd odd even even (4.3.18)
y-coordinate  odd even  odd even
z-coordinate  odd even even odd

In this way we have reduced the problem of construction of the boundary conditions for three-
dimensional particles to the same problem for particles on a line, which we have discussed earlier. The
important consequence is that it is sufficient to analyze each component K (X, t|X’, 0; £) with a given
parity individually, with respect to the interchange of particles. For a given value of ¢, this function,
defined on the configuration space, can be obtained from atransition amplitude defined on the state space
Dﬁ = Dn ® Dy ® Dy, because it is a product of the transition probabilities of three independent
processes, each defined on a Dy with the appropriate (bosonic or fermionic) boundary conditions.

Let {Xre(t);t > O} bethe set of paths for identical fermions moving in R3. Then, this set is given
according to the following rule

=0 =1 =2 =3
Xe(t) Xr(t) Xg(t) Xg(t)

Xee) = 1 Ye() Yet) | Ye® Ya(t) (4.3.19)
Zr(1) Zg(t) Zg(t) Zg(1)

where Xg(t), Ye(t) and Zg(t) denotethe set of pathsfor fermionsin the x-, y- and z-directions. Similarly,
Xp(t), Ya(t) and Zg(t) are the set of paths for bosons in the x-, y- and z-directions. For bosons the
decompositionis as follows

£=0 £=1 (=2 £=3
Xg(1) Xp(t) Xe(t) Xe()

Xee®) = | Ya(t) Ye(t) Ye) | Ye(t) (4320
Zg(t) ZE(1) ZE(t) Zg(t).
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For example, the fermion case with £ = 1isinvariant under the even permutations P, of the particle
coordinates. Furthermore, under r (interchange of two particles) it is antisymmetric in the x-direction
and symmetric in the y- and z-directions. These symmetry properties allow us to restrict the transitions
X' — X to adomain D}, = Dy ® Dy ® D, simultaneously satisfying the conditions

) XL > X2 > - = XN
XeDy = {y1=Y2> =y (4.3.21)
=222 -2 1IN

with the boundary conditionthat K; (X, X’; 7; £ = 1) iszeroif, during thetransition process, the boundary
aDy ishit in the x-direction, being at the same time symmetric with respect to the boundary Dy in the
y- and the z-direction.

The transition amplitude for particles with interactions can be constructed now with the help of the
Feynman—Kac formula. Of course, for a straightforward application of the permutation symmetries, the
potential term must not spoil the indistinguishability of the particles. In other words, it should possess
appropriate symmetry properties under the permutation of particle positions.

The spin states are left out of the picture by assuming that there are no spin-dependent interactions
involved and therefore the spin, as an additional degree of freedom, does not have to be considered
explicitly. Of course, the spin degrees of freedom are implicitly present because two identical particles
are only considered indistinguishableif they arein the same spin state.

4.3.2 Path-integral formalism for coupled identical oscillators

Now we proceed to study the path-integral approach to the calculation of partition functions and
generating functionals in quantum statistical mechanics. First, we consider the direct approach to such
calculations in the familiar case of a harmonic potential. In the next sections, we shall study a genera
approach in the framework of field theories at non-zero temperature and at finite energy.

The case of identical particlesin a parabolic confinement potential with either harmonic interactions
between the particles, or with an anisotropy induced by a homogeneous magnetic field on top of the
parabolic confinement gives rise to repetitive Gaussian integrals and alows us to derive an explicit
expression for the generating function of the canonical partition function (Brosens et al 1997). For an
ideal gas of non-interacting particlesin a parabolic well, this generating function coincides with the grand
canonical partition function. With interactions, the calculation of this generating function (instead of the
partition function itself) circumvents the constraints on the summation over the cycles of the permutation
group and, because of this fact, allows us to calculate the canonical partition function recursively, for the
system with harmonic two-body interactions.

Note that the model of N identical particlesin a parabolic well, in the presence of a magnetic field
and with harmonic repulsive or attractive two-body interactions, hasits intrinsic value since it congtitutes
an exactly soluble idealization of atomsin amagnetic trap.

< Harmonically interacting identical particlesin a parabolic well

We shall calculate the partition function for N identical particleswith thefollowing Lagrangian, including
one-body and two-body potentials:

L =

NI =

N
Zﬁ—w—w
j=1
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2 & 2 W O 2
V1=7. ri V2=—Z.Z(rj—r|).
j=1 J,|=1

The potentials can be rewritten in terms of the centre-of-mass coordinate r and the coordinates u;
describing the positions of the particles measured from the centre of mass:

N
1
R:N.er uj=r; —R (4.3.22)
j=1
S0 that
Vi+Ve=Vem +V
1 N
_ 2p2 w2 2
VCM_ENQ R V=W Zuj
j=1
with

W = v/Q2 — Nw2. (4.3.23)

The requirement that W be real (i.e. 2 > Nw?) expresses the stability condition that the confining
potential be strong enough to overcome the repulsion between the particles. If a harmonic interparticle
attraction is considered, the eigenfrequency W would become W = +/Q2+ Nw?, and no stability
condition has to be imposed on the confining potential.

Since the system consists in each direction of one degree of freedom with the frequency © and
(N — 1) degrees of freedom with the frequency W, the propagator

Kp(ry -, BIry -1, 0 = (ry - r e, - o (4.3.24)

for distinguishable particles (indicated by the subscript D for three dimensions and d in one dimension)
can be calculated from the action expressed in the imaginary-time variable, and it is of course a product
of the propagators Ky per component:

KD(r:,L/ e r;\,jv ;Blri e r;\ls 0) = Kd()_(/,v 13|)_(/7 O) Kd(y,/v :Bly/a 0) Kd(z/,s 13|2/7 O) (4325)

where the column vector X contains the x-components of the particles, i.e. T = (X1,...,xn) and
similarly for y and z. Knowing the propagator K (x”, 8|x’, 0) of asingle harmonic oscillator (cf (2.2.77)),
we find for the one-dimensional propagator Ky of the N distinguishable oscillators in the interacting
system that

Ka(X", IX', 0) =

K(vNX", BIvVNX', 0)q 1

(/NX", fIVNX', 0)q [TK & BIX;. Oow (4.3.26)
K(V/NX", BIVNX', Ow |3
where the factor +/N in v/ NX”, /N X’ accounts for the additional factor N in Vcm. The denominator
in (4.3.26) compensates for the fact that (N — 1) instead of N degrees of freedom of frequency W

are available. The three-dimensional propagator Kp (4.3.24) for N distinguishable oscillators of the
interacting system is, according to (4.3.25) and (4.3.26), given by

Ko(7", BIT', 0)

KWNR, BIWVNR. Og 17, .,
- K(r?, Blri,0 43.27
K<JNR//,/3|JNR/,O)WE (1 A1 Ow s

K(ri, BIrj, Ow = K(X{, BIXj, OwK (¥], Blyj, OwK (Z], BIZ], Ow (4.3.28)
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wherethevectorswith bar F denote (asin the preceding section) the pointsin the configuration space RN,
i.e T ={(X1, ¥1,21), ..., (XN, YN, Zn)}. Similarly to the case of free particles considered in preceding
section, the symmetrized density matrix K; for three-dimensional identical particles (indicated by the
subscript 1) can be obtained by using the following projection, with P denoting the permutation matrix:

1
Ki(F".BIF'.0) = > EPKp (P, BIT. 0) (4.3.29)
P

where§ = +1 for bosonsand § = —1 for fermions. It should be emphasized that P acts on the particle
indices, not on the componentsof r separately. The partition function 2| = Trexp{—pgH} isthen readily
obtained by integrating over the configuration space

1
Z =/d3Nr' K\ (F, BIF, 0) :/d3Nr'm § £PKp(PF, BIT, 0). (4.3.30)
P

Theintegration proceedsin three steps:
(i) thefirst stage deals with the centre-of-mass treatment;
(if) the second concernsthe cyclic decomposition of the permutationsin (4.3.30) and
(iii) at the third step, the summation over the cycleswill be performed.
<& Step 1: The centre-of-mass decoupling
Making use of the §-function to separate the centre-of-mass variable and the Fourier transform, we obtain

Z - /dsr/ A%k jr KW/NR BIVNR, 0)g
' 21)% K(/NR.BIVNR. Ow

N
x [[@N G X 6" [T K(Pnj. piry. Owe i, (4.331)
TP j=1

This transformation makes R independent of the particle positions relative to the centre of mass. The
real dependence on the relative positionsis reintroduced by the Fourier transform. It should be noted that
the explicit dependence of propagator (4.3.27) on R, and the presence of the factor exp{—ik - rj/N} are
consequences of the two-body interactions.

<& Step 2: Cyclic decomposition

Any permutation can be broken up into cycles (see, e.g., Hamermesh (1964)). Recall that a cycle Pl(c) of
length ¢, in this context, is a special type of general permutations P. Acting on a subset of ¢ elements x;

(i =1,...,0), it producesthe permutation: P¥(x) = xi41 (i =1, ..., € — 1), P“(x) = x1. Suppose
that the cyclic decomposition of a particular permutation contains M, cycles of length £. It is known that
the positive integers M, and ¢ then have to satisfy the constraint

> eMg=N. (4.3.32)
4
Furthermore, the number M(My, ... My) of cyclic decompositionswith M1 cyclesof length 1, ..., M,
cyclesof length ¢, . .. isknown to be
N!
M(M4, ..., Mn) (4.3.33)

1, MgteMe
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A cycleof length ¢ can be obtained from (¢ — 1) transpositions. Therefore, the sign factor £P can be

decomposed as
gP =T e DM (4.3.34)
¢
Combining these results, we obtain

K R, R, 0 (=DM
2= /d3 /(271)3 kRK((://—_R §||¢CR 0)); MZ Hg oM (Ke(kpMe (4.3.35)

Ke(k) = f s f - f A3y 8(ress — rl)l_[ K (rjs1 BIrj, Owe * /N (43.36)

j=1
The §-function expresses the fact that the decompositionis cyclic. It is obvious that
Ke(k) = £ (ko £8P (k) K (ko) (4.3.37)

which allows us to analyze Iy (k) from its one-dimensional constituents:
N .
K0 = [ dxern [ [ dstxers = x0 [T KOG p. Owe WM. (43.38)
j=1

Using the semigroup property of the harmonic oscillator propagator K (Xji1, B81Xj, Ow, al
integrations but one can be performed

7
K& (k) = /dx K(X,EﬁIX,O)wexp{ —/ dr fx(T)X(T)} (4.3.39)
0

where
fy(z) = K Zia(z —iB. (4.3.40)
N =
Theintegral (4.3.39) is the propagator Ky, ¢ of adriven harmonic oscillator with the Lagrangian
Lw, f, = X2 — 2W2X2 + fx(1)X (4.3.41)
studied in sections 1.2.7 and 1.2.8 (see (1.2.262) and also problem 2.2.14, page 198, volume 1). It should

be noted that without the two-body interactions, the driving force (4.3.40) is absent. Taking the result
from (1.2.262) and integrating over the configuration space, we obtain

Zw 1, () = / dx K, 1, (x. BIx. 0)

{ / dt/ fx(r)fx(U) cosh((5 |T—“')W)}.(4.3.42)
= S iam zﬁW sinh1pw

After some straightforward algebra, we obtain for the one-dimensional function IC,ElD) (Kx):

o ¢ K214+ePW
2sinh $¢pW P\Tanew =W

K& (k) = (4.3.43)



214 Path integralsin statistical physics

and for its three-dimensional extension

, 1 ° ¢ K21+ePW
Ke®) = L xesre ). 4344
W =\zamipw) *P\ mewi—em (4.344)

Using (4.3.32), we are then left with asixfold integral for the partition function

3k . 2 —BW
Z = /d3R d°k e|k~RK(\/NRv,3|\/NR,O)Q { 1 k‘l1+e ,

(27)3"  K(/NR, |v/NR, O)w TANW1-—e W
3My
g(ﬁfl)'\/lz 1
x . 4.3.45
M§AN U M¢leMe \ 2sinh 3e8W (4349

Both the integrations over k and R are Gaussian, leading to the following seriesfor Z:

. 1 3
2 = (Sm—iﬂw) ZO,(N)

sinh58Q
(4.3.46)

3M,
—1M, ef%eﬂw
Z2O/N) = ; .
1(N) M§ANU MZ!EMZ 1— e BW

Without the two-body interactions (W = Q, that isw = 0, cf (4.3.23)), Z©,(N) is the partition
function of a set of identical oscillators. The partition function Z; only differsfromit by a centre-of-mass
correction and the actual values of W.

<& Step 3: The generating function

The remaining summation over the cycles involves the constraint (4.3.32), which, however, can be
removed by the use of the generating function technique. Concentrating on the explicit dependence of
Z©,(N) on N (with W considered as a parameter), we can construct the following generating function

2w £ Y 20 (4.3.47)
N=0

with 2©(0) = 1 by definition. The partition function Z©,(N) can then be obtained by taking the
appropriate derivatives of E(u) with respect to u, assuming that the series for E(u) is convergent near

u=_~0:
N

1
ZON)y = = ——
N! duN U=0

The summation over the number of cycles with the length ¢ is now unrestricted and can easily be
performed:

2(u) (4.3.48)

00 1 e—geﬁwue
E1(u) = ex Tte——— 1, 4.3.49
1(U) p{;s e(l_e—wvv)s} (4.3.49)
This series can be rewritten into the more convenient form
o0
E(U) = exp{ .y Z 0+ +2)Ind - sue—ﬁW<3+“>)}. (4.3.50)

v=0
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It should be noted that, in the case of a model without two-body interaction (W = 0), the function
E1(u) coincides with the grand canonical partition function of a set of identical particlesin a parabolic
well.

Considering the differentiation in (4.3.48) step by step, i.e.

dN—l

ZO(N
1(N) = N!duN-1du

E(u)

u=0

together with the product rule and an elementary binomial expansion, we can find the following reccurence
relation (Brosens et al 1997):

3
(N
ZON) = Z’EN " 1<1b2 e m) ZOm) (4.351)

where
b=efW, (4.3.52)

The corresponding one-dimensional version of this recurrence relation becomes

Z(O)L(lp)(m) (4.3.53)

LADYE N s 1— pN-m

leading to the following explicit expression for the one-dimensional boson Z©, and one-dimensional
fermion Z©s partition functions:

1
Z(O)b _ pzN
[TjL1(1 - bi)
1N2
- bz . (4.3.54)
TN, —bi)

It iseasy to check that these partition functionsare the solution of the recurrencerelation for 2@, .apy(N)
with & = 1for bosonsand ¢ = —1 for fermions. Unfortunately, for the three-dimensional case an analytic
solution of (4.3.51) has not been found and we have to rely on numerical schemes.

Note that the same techniquesis applicableto the calculation of the partition function for N identical
oscillatorsin a constant magnetic field with the Lagrangian:

N N
%Z Fj = 2m0X)¥j)% — 3Q% ) r? (4.3.55)

where wc is the cyclotron frequency (Brosens et al 1997).

Having at our disposal expressions for the partition functions (explicit in the one-dimensional case
or obtained numerically from the recurrence relations in the three-dimensional case), we can find all the
thermodynamical characteristics of systems of bosons or fermions in the harmonic potential and in the
magnetic field by using the standard formulae, for example, the freeenergy F = —~1In Z, the internal
energy U = 9(BF)/a8 and the specific heat C = dU/adT.
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4.3.3 Pathintegralsand parastatistics

In the preceding subsections, we discussed the construction of path integrals for identical bosons and
fermions. In this subsection, we shall generalize our consideration to the more general case of particles
obeying parastatistics. Parastatistics, invented by H S Green (1953), is the first ever consistent extension
of fundamental statistics. In this, the standard bosonic or fermionic fields which would create identical
particles are replaced by composite fiel ds whose components commute with themsel ves and anticommute
with each other for parabosons, or vice versa for parafermions. The number p of components of the
fields defines the ‘order’ of the parastatistics. In general, we can put, at most, p parafermionsin atotally
symmetric wavefunction and, at most, p parabosonsin atotally antisymmetric one.

Although direct physical applications of parastatistics are absent, it is quite instructive to learn the
path-integral techniques needed for such a generalization.

<> Basics of the parastatistics

Green noted that the commutator of the number operator with the annihilation and creation operatorsis
the same for both bosons and fermions:

A, 3] = g (4.3.56)

The number operator can be written as
fik = 3[A], Al + constant (4.357)
with an anticommutator ([-, -]+ = {-, -}) in the case of bosons and a commutator ([, -]- = [, -]) in the

case of fermions. If these expressions are inserted in the commutation relation (4.3.56), the resulting
relation is trilinear in the annihilation and creation operators (Green's trilinear commutation relation for
his parabose and parafermi statistics):

[1A], &le, 3] = 28imay . (4.3.58)
Since these rules are trilinear, the usual vacuum condition
%|0) =0 (4.3.59)

does not suffice to allow the calculation of matrix elements of the as and a's. Hence, a condition on the
one-particle states must be added:
aa'10) = 5u0). (4.3.60)

Green found an infinite set of solutionsof his commutation rules, one for each integer, by giving an ansatz
which he expressed in terms of Bose and Fermi operators. Let

p p
3 => b &=y b (4.3.61)
a=1 a=1

and let 'b\ﬁ“) and B\l((ﬂ” be Bose (Fermi) operatorsfor « = g, but anticommute (commute) for « # 8, for
the ‘parabose’ (‘parafermi’) cases. Thisansatz clearly satisfies Green’srelation. Theinteger p isthe order
of the parastatistics. The physical interpretation of p is that, for parabosons, p is the maximum number
of particles that can occupy an antisymmetric state, while for parafermions, p is the maximum number
of particles that can occupy a symmetric state (in particular, the maximum number which can occupy the
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same state). The case p = 1 corresponds to the usual Bose or Fermi statistics. From Green's ansatz,
it is clear that the squares of al norms of states are positive, since the sums of Bose or Fermi operators
give positive norms. Thus, parastatistics gives a set of self-consistent theories. The violations of statistics
provided by parastatistics are gross. Parafermi statistics of order 2 has up to two particlesin each quantum
state. High-precision experiments are not necessary to rulethis out for all particleswe think are fermions.
It isimportant to note that the parastatistics of order p is related by the so-called Klein transformation to
modelswith usual bosons or fermions and with exact SO(p) or SU (p) internal symmetry.

< The permutation group Sy and quantization of many-body systems

As in the case of fermions or bosons, we can deal with a parastatistical system with a fixed humber
of particles in a first-quantized formalism. In this approach, the N-body Hilbert space is decomposed
into irreducible representations of the particle permutation group Sy (for basic facts about Sy see,
e.g., in Hamermesh (1964)). Since the particles are indistinguishable, this group should be viewed as
a ‘gauge’ symmetry of the system, and the states transforming in the same representation have to be
identified. Moreover, since al physical operators are required to commute with the permutation group,
each irreducible component is a supersel ection sector. Therefore, we can project the Hilbert spaceto only
some of the irreducible representations of Sy. Further, only one state in each irreducible representation
need be kept as a representative of the multiplet of physically equivalent states. The resulting reduced
space congtitutes a consistent quantization of N indistinguishable particles. The choice of included
irreducible representations constitutes a choice of quantum statistics.

This description relies on a canonical quantization of the many-body system. It is of interest to
have also a path-integral formulation of a quantum system, since this complements and completes the
conceptua framework and usually offers orthogonal intuition in several cases. For ordinary statistics, this
question was studied in sections 4.3.1 and 4.3.2. Here, we present such a realization for parastatistics
(Polychronakos 1996).

The starting point, as in the ordinary bosonic statistics in section 4.3.1, will be the coordinate
representation of the full (unprojected) Hilbert space, spanned by the position eigenstates |Xy, ..., XN) =
|x) (where x; can bein a space of any dimension). The collection of such states for a set of distinct x;
transformsin the N!-dimensional defining representation of Sy

§|X) = IPX) = IXp—l(l), ceey XP_l(N)> (4362)

where P is a permutation (the appearance of P~ is necessary to represent the products of permutations
in the right order).

<> Projection of statesto irreducible representations of Sy

Projecting the Hilbert space to an irreducible representation R of Sy amounts to keeping only linear
combinations of states within this multiplet transformingin R, that is,

la;x) =Y Ca(P)Px) a=1....dr=dim(R) (4.3.63)
P

wherethe sumistaken over all the elements of the permutation group and Ca(P) are appropriately chosen
coefficients. Let us denote by Rap( P) the matrix elements of the permutation P inthe representations R,
so that

Pla,x) = ) Rab(P~Hlb, x). (4.3.64)
b
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The defining representation decomposes into irreducible components, classified by the Young
tableaux, each appearing with a certain multiplicity. Thus, we need to clarify whether we have to
keep only one irreducible representation out of each multiplicity or the whole set of a given irreducible
representations. To do this, we note that if instead of the base state |x) for the construction of the
states |a, X) in (4.3.63) we choose a different permutation P|x), then although the new states |a, Px)
constructed through (4.3.63) till transform in the irreducible representation R, in general they are not
linear combinations of |a, x), but rather span a different copy of R. Since we can continuously movein
the configuration space from |x) to P|x), we conclude that we must keep all irreducible representations
R in the decomposition of the defining representation according to a given multiplicity. To realize this
explicitly, we construct the states

d
lab, X) = ‘/WF; > Ran(P)PIX). (4.3.65)
P

Using the group property of the representation R(P1) R(P2) = R(P1P»), we deduce that under the action
of the group Sy and under a change of the base point x, these states transform as

Plab, x) = Y " Rac(P™H)cb, x)
C

4.3.66
lab, Px) = > " Ren(P~Hlac, x). (4369
Cc

Thus, we see that the first index in these states labels the different elements of a single irreducible
representation R, while the second index labels the different equivalent irreducible representations in
the multiplet. Since both indices take dr values, we recover the standard result that each irreducible
representation of Sy is embedded in the defining representation anumber of times equal to its dimension.
Consider now the matrix element (ab, x| Alcd, y), where A is any physical operator, that is, any
operator commuting with all the elements P of Sy. Substituti ng the definition (4.3.65) and using the
unitarity of P (PT = P~1) and of R (R%,(P) = Rsa(P~1)) we obtain, after a change of summation
variable,
-~ dR / -1 AD
(ab, x|Alcd, y) = N Z Roe(P") Rea(P™7) Red (P) (X|AP]y). (4.3.67)

" P,PLe

Using further the Schur orthogonality relation for the representations, i.e.
1 N!
> " Rab(P)Rea(P™1) = g Saddbe (4.3.68)
P

we finally obtain
(ab, x| Alcd. y) =~ acRod(P) (x| A|Py). (4.3.69)
P

Let usfirst choose A = 1. Then this provides the overlap between the states:

(ab, x|cd, y) =) " 8acRod(P)3(X — Py). (4.3.70)
P

For x inthe neighborhood of y, itis P = 1 which contributesto the normalization, for which Rpq (1) = Spg
and we recover the standard normalization for the states.
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<& Propagator for particles with parastatistics defined by an irreducible representation of the
per mutation group Sy

Now we can choose A = e tH where H is the Hamiltonian, and thus find the propagator
K (ab; x, ticd; y, 0) between the states of the system. It is clear from (4.3.69) that the first index a in
the state |ab, x) propagatestrivially. Sincethisistheindex that correspondsto the different but physically
equivalent states within each irreducible representation R, we conclude that the required projection of
the Hilbert space to the physical subspace amounts to simply omitting this index from all states (that is,
freeze this index to the same fixed value for all states of the theory; no physical quantity will ever depend
on the choice of this value). On the other hand, the second index, corresponding to different equivalent
irreducible representations, does not propagate trivially and must, as argued before, be kept. We are led
therefore to the physical states |ba, x) — |a, x) and the propagator

Kr(a: X, t|b; y, 0) = ) Ran(P)Kp(x, t|Py,0) (4.3.71)
P

where Kp(x, t|Py,0) = (x|exp{—itA}P|y) is the usual many-body propagator for distinguishable
particles. Expressing the latter in terms of the standard path integral and using (4.3.71), we obtain the
path-integral form of the propagator for N particles obeying the parastatistics. We note that, due to the
transformation property (4.3.66), the states |a, Px) arelinear combinations of the states |a, x). Therefore,
projecting down to the physical subspace correspondingto R amountsto trading the original N! copies of
physically equivalent states |Px) for a number dr of global internal degrees of freedom for the system,
labeled by theindex a.

It is now easy to write down the path integral corresponding to identical particles quantized in the
R-irreducible representation of Sy. Kp(X, t|Py, 0) can be expressed as an N-body path integral in the
standard way, with particles starting from the positions Py, = yp-1,;, and ending in the positions x;.
Since all permutations of particle positions are physically equivalent, (4.3.71) instructs us to sum over all
sectors where particles end up in such permuted positions, weighted with the factors Ry (P) depending
on the internal degrees of freedom of the initial and final states. From (4.3.65) and (4.3.70) we can write
the completeness rel ation within the physical subspace

15— [OX 4372
R—/W?a,xxa,m (4372)

andwith theuse of (4.3.72) it iseasy to provethat thistransition amplitude satisfies the standard semigroup
property

dN
/ > K@, thh; y, OKR: Y. Ul 2.0 = K@ x,ti; 2.0 0<t' <t (4373)
b

<& Extension to parabosons and par afer mions

The extension to parabosons, parafermions or any similar statisticsisimmediate. Let S= {Ry, ..., Ry}
bethe set of allowed irreduciblerepresentationsof Sy inthe Hilbert space. Theinternal degree of freedom
now takesthevalues A = (R,a), where R e Sanda =1, ..., dr labelstheinternal degrees of freedom
within each irreducible representation. So, overal, A tekesdg, + dgr, + - - - + dR, different values. The
propagator (and corresponding path integral) is obviously

Ks(A; X, t|B; ¥, 0) = ) S(P)agKp(x, t| Py, 0) (4.3.74)
P
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where S(P) aB = Sra,Rs (Ra)ab(P). For parabosons (parafermions) of the order p, Sisthe set of Young
tableaux with up to p rows (columns). We note that the irreducible representations for parafermions
are the duals of those for parabosons (the dual of a tableau is the tableau with the rows and columns
interchanged). In an appropriate basis, the representation matrices of the dual irreducible representations
R, Rarerea and satisfy

Rab(P) = (—=1)P Rap(P) (4.3.75)

where (—1)P is the parity of the permutation. We arrive then at the relation between the weights for
parabosons and parafermions of the order p:

Sor (P)ag = (—1)P Spe(P) aB. (4.3.76)

This extends a similar relation for ordinary fermions and bosons, for which there are no internal degrees
of freedomand S3(P) = 1.

From the path integral we can evaluate the partition function, by simply shifting to Euclidean time
t — —iB and summing over al initial and final states, with the measure implied by (4.3.72). Given that

> " Raa(P) = TrR(P) = xr(P) (4.3.77)
a
we get an expression in terms of the characters yr of Sy:

dN .
Zs(B) =/T'XZS(P)(x|e‘ﬁH|Px) where S(P) = ZXR(P). (4.3.78)
TP

ReS

The interpretation in terms of a periodic Euclidean path integral is obvious. The characters xr(P) area
set of integers, and thus the ‘ statistical factors' S(P) weighing each topological sector of the path integral
are (positive or negative) integers. In the case of parabosons of any order p, however, we note that the
statistical weights are positive (or zero) integers. The ones for parafermions can be either positive or
negative, as given by

Sor(P) = (-1)PSye(P)  Spe(P) > 0. (4.3.79)

A general formulafor Syg(P) for an arbitrary p is absent.

<& Partition function for an ideal parabosonic gas

From these results we can derive the partition function for a gas of parastatistical particles, as well as
the allowed occupancy of single-particle states. Consider a collection of non-interacting particles, for
which the Hamiltonian is separable into a sum of one-body Hamiltonians H = )" H(x;). Let the
energy eigenvalues of the one-body problem be ¢; and the corresponding one-body Boltzmann factors
Zi = e P<i Consider now asector of the Euclidean path integral characterized by the permutation of final
points P. It is clear that this path integra Zp decomposes into a product of disconnected components,
characterized by the fact that the particle world-lines in each component mix particles only within the
same component. Similarly to the cyclic decomposition in the preceding subsection (see step 2 of the
derivation of the partition function for identical particles), we can decompose the path integral into cyclic
permutations:

ze= [ 2. (4.3.80)
Lecycles(P)



Path integrals for indistinguishable particles in quantum mechanics 221

The path integral Z, for a cyclic permutation of ¢ particles taking into account the periodic boundary
conditions for partition functions can be thought of as the path integral of a single particle winding ¢
times around the Euclidean time 8. This means that

Zu(B)=Z210p) =) _Z} (4.3.81)

and the corresponding expression for Zp becomes
ze= [ D z. (4.3.82)
tecycles(P) i
The expression for the full partition function then becomes
1
Zg= ZZW!XR(P) [T >z (4.3.83)
ReS P necycles(P) i

Expression (4.3.83) can be presented in a more explicit form via the so-called Schur functions. This
representation does not deal with a path-integral technique and for further details we refer the reader to
the original papers by Suranyi (1990) and Chaturvedi (1996).

4.3.4 Problems

Problem 4.3.1. In chapter 2, we learned that in imaginary time a quantum-mechanical particle formally
looks like a Brownian particle. Check that transition amplitude (4.3.3) for indistinguishable bosons can
be interpreted as a transition probability amplitude for a Brownian particle (boson diffusion process).

Hint. Let X and Y be two elements of D3 (see definition after (4.3.1)) and construct the following
permanent o
Kig(X,t|Y, 0) = perm|K (x;. t|yj. O)]. (4.3.84)

Itisclear that K g (the subscript IB means *indistinguishable bosons') is positive for all (X, Y) pairs
and that it also satisfies the required initial condition

tIirrg)K|B()_(,t|\?,O):8(>_(—\?). (4.3.85)

Furthermore, in order that K|g can be used as a transition probability density, it has to satisfy the
conservation of probability (normalization) and the semigroup property

/3 d®NY Kig(X,t]Y,0 =1 (4.3.86)
I:)N

/3 d3NY Kig(X, t|Y, 0)Ks(Y, 8|z, 0) = Kig(X, t + s|Z, 0). (4.3.87)
D

N

The conservation of probability can be derived using the property that a permanent is invariant under
an interchange of two rows or columns. Hence

N

_ _ _ -1 _ _
/D3 d3NY Kig(X, t|Y, 0) = /03 d3NYm > " Kig(X,t|Yp, 0)
N p

1 _
= —/ d3NY perm|K (xi, t]yj, 0)] = 1 (4.3.88)
N! R3N
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where use has been made of the fact that K (x;, t]y;j, 0) conserves probability.

The semigroup property follows with an analogous procedure by extending the integration domain
Dy to RN using the permutation symmetry and subsequently using the semigroup property of the single-
particle propagators:

_ _ — - _ 1 — _ - - -
/ d*NY Kig(X, tIY, s)Kis(Y,s|Z,0) = —/ d*NY )" Kis(X, t|Yp, )Kig(Yp, |Z, 0)
D3 N! D3

N N )
1 :
=N /H;@N d3NY perm|K (xi, tlyj, S)| x perm|K (yj, S|z, 0)| = perm|K (xi, t|z, O)|.
(4.3.89)

In the last step, the semigroup property of the one-particle propagators gives rise to N! identical
contributions.

In order to see how the integration over two permanents leads again to a permanent, the following
argument might be useful. Denote by |Y) a fully symmetrized and properly normalized solution of the
Schrodinger equation for free bosons. The resolution of unity is then given by

1

1=—
N! Jray

d3NY Y)Y (Y]. (4.3.90)

Denoting by H{, the Hamiltonian for the i th free particle, and by Ho = Y_\; H/, the Hamiltonian for N
free non-interacting bosons, adiffusionfromz € Dy to X € Dy isgiven by

N!

The reduction of all identical contributionsto the preceding integral by permutation symmetry then leads
to

_ _ . ~ _ 1 _ - o _ ~ _
Kig(X,t|Z,0) = (X|e Hot/hZ) = —/ d3NY (X |e Hot=9/h)yy v |e=Hos/h zy (4.3.91)
R3N

Kin(X,t+512,0)= [ dNY (je /v e Fosn 2y
DN
= /3 d®NY Kig(X, t|Y, 0K s(Y, s|Z, 0). (4.3.92)
DN

Therefore, Kig(X, t|Y, 0) is a transition probability density to go from Y to X in atime lapse t for
a system of non-interacting identical particles with Bose-Einstein statistics. The boundary conditions
for this process are determined by the behaviour of K;g(X,t|Y,0) at the boundary dDy. Because
VKig(X,t|Y, 0)iszerofor X € dDy, K;g satisfies Neumann boundary conditions, leading to reflection
for the process at the boundary.

Problem 4.3.2. Transform the initial expression (4.3.30) for the partition function of identical particles
into the form (4.3.31), with separated centre-of-mass variables.

Hint. The centre-of-mass coordinate R does not only depend on the coordinates of all the particles, but it
also hasits own propagator. Therefore, substituting R by its expression in terms of the particle positions
and then performing the integration does not seem to be the most adequate way to deal with theintegration
over the configuration space. Instead, the following identity is used for the formal treatment of R as an
independent coordinate, at the expense of additional integrations:

) 1 N o 1 N
/dSNr f(r, N;”) =/d3R/d3Nr f(F, R)5<R_N;rj>. (4.3.93)
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The Fourier transformation of the §-function then leads to

/d3Nr' f(r iir-) —/d3R/ d% eik'R/d3Nr' f(7, R)gkT (4.3.94)
TN (2m)3 ’ ~
j=1

where k = %{(1, 1,1),...,(1,1,1)} isa3N-dimensional vector. Applying this transformation to the
partition function Z, and rearranging the factors, we obtain (4.3.31).

4.4 Fieldtheory at non-zero temperature

Thissectionis devoted to field theories describing open systemswith exchange of energy between systems
and surrounding thermal reservoirs. In other words, we shall consider canonical quantum statistical
ensembles in the second-quantized formalism, that is quantum field theory at non-zero temperature.

The systems can be non-relativistic (section 4.4.1) or relativistic (sections 4.4.2 and 4.4.3). In either
case, the basic quantities to be calculated are the corresponding canonical density operator (4.1.11), the
partition function (4.1.13) and mean values (4.1.7) of operators constructed from the quantum fields.
In fact, if we are interested only in the static characteristics of thermal systems in equilibrium, the
calculations reduce to expressing the trace of the density operator o = Z/gl exp{—p H} through the
path integral (which we have already considered several times in this book; cf sections 2.2.1 and 4.3.2)
and to the subsequent calculation of the path integral (exact or approximate). Therefore, sections 4.4.1
and 4.4.2, devoted to static characteristics, contain only some peculiarities of the trace calculation for
field theoretical systems (diagram techniques, the method of the effective potential). In contrast, if we
wish to study dynamical processes for thermal field systems, we need an essential modification of the
path-integral representation for the partition function (in particular, the doubling of field variables). We
shall consider thistopic in section 4.4.3.

441 Non-relativisticfield theory at non-zero temperature and the diagram technique

The non-relativistic field theory is the quantum mechanics of systems with an arbitrary number of
identical particles in the formalism of the second quantization. In classical theory, such systems are
described by the complex fields ¢, ¢*, which are ordinary or anticommuting functions (depending on
whether the particle statistics are bosonic or fermionic). The quantization is carried out with the help
of the usual canonical commutation relations in the bosonic case or anticommutation relations in the
fermionic case.

The free action functional hasthe form

Sle™, ¢l = / d*x o* (X)[id — Hilp(x) (4.4.1)

where x = (t,x) and Hy isa one-particle Hamiltonian, i.e. a linear operator acting only on x and
having the meaning of the usual quantum-mechanical Hamiltonian for one particle from the system under

H] —

= o VIO — . (4.4.2)

Herethefirst term isthe kinetic energy of the particle, the second is the potential of an external field (e.g.,
acrystal lattice potential for electronsin a solid body) and 1 has the meaning of the chemical potential.
If the particles have non-zero spin, the fields ¢*, ¢ carry the spin index (hidden in our formulag).
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Itis clear from (4.4.1) that i¢* is the canonically conjugate momentum for the field ¢. Thus, the
canonical (anti)commutation relations have the form
P00@T(x) £ ¢T(xNP0) = hs(x — x). (44.3)

If the fields ¢*, ¢ are presented as a series expansion over some orthonormal complete set of
eigenfunctions ®,, of the operator Hy or of the kinetic energy part p2/(2m),

G0 =) Ba  §0=) AP (4.4.4)

the coefficients @, , d) obey the standard commutation relations for creation and annihilation operators:
8,8) 8], = dup
8,8 + 88, =484, £a,3) =0.
In order to take into account the interaction between the particles of the system, we have to add
higher-order termsinto the Hamiltonian. Usually, we consider only pairwise interactions:

Hint = / d3x d3y u(x — y)e*(t, X)e(t, X)e*(t, Ye(t, y) (4.4.5)

where u(x — y) isthe two-point potential.

If we are interested in calculating the thermodynamical mean values (4.4.16) and (4.4.17), the
variable t should be converted into the Euclidean one, t — t = —it, and t plays the role of the
temperature: t € [0,8 = (ksT)"1]. The subsequent formulae are dightly different for the bosonic
and fermionic cases.

<& Generating functional and diagram technique for the bosonic non-relativistic field theory
In the bosonic case, the path integral is defined over the space of periodic functions

et +B.X) =, X) @ (t+B,X)=¢*(r,X) (4.4.6)

(because we are calculating the trace (4.1.14)). Assuming that the particles are confined in abox L2 and
taking into account the periodicity (4.4.6), we can make the Fourier transform (i.e. the expansion (4.4.4)
over the eigenfunctions of the one-particle kinetic energy):

a(wn, k)g@nt—kx)

1
(T, X) = ——
JﬁL%;,k

1 _ ) (4.4.7)
¢*(1. ) = a* (wn, ket
VPR
where
wn = 21tn/B ki = 27n;/L n,n €2%. (4.4.8)
In terms of these Fourier components, the complete action takes the form
k2
S= Zk om iw—u|a*(w, Kalw, k)
1 ~
+ 2513 Z t(ky — ka)a* (w1, k1)a* (w2, kp)a(ws, ka)a(ws, k). (4.4.9)

ki+ko=kz+ka
w1twr=w3+ws
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Here U(k) is the Fourier transform of the two-particle potential u(x),
1 e
ux) = 5 Xk: ekXT(k) (4.4.10)

and we have used the shorthand notation wj = wn i (j =1,2,3,4).
The basic objects in a field theory at non-zero temperature are the thermal Green functions, i.e. the
mean values of the products of field variables:

(T(@(r1, x1) -+ @(Tn, Xn)hp = Trlpc(B)(@(T1, X1) - - - @(Tn, Xn))] (44.11)

(pc(B) is the canonical density operator (4.1.11) at the inverse temperature 8). The usua steps which
we have carried out several times in this book yield the following path-integral representation for their
generating functional:

o 1 . .
Zlj. 1= ‘ﬁfl/Dfp Do* exp{ - ?_LI:S+ / d*x (j*(z, X)e(z, X) + j (1, )™ (z, X))“. (4.4.12)

The perturbation expansion of this path integral leads to the diagram technique with the following basic
elements:

. . w, k 2 -1
Free two-point Green function: _ Go = (ia) _ ;_m + M)
w1, Ky w3, K3
Two-particle vertex: >< U(ky — k3) + U(ky — ka) .
w2, ko wa, kg

<& Generating functional and diagram technique for the fermionic non-relativistic field theory

The quantization of fermionic systemsis carried out by integration over Grassmann elements. To obtain
correct statistics, we have to input antiperiodic boundary conditionsin t (problem 4.4.3, page 254):

p(t+B,X)=—p(r,X) @ (T+B,X) = —¢"(z,X). (4.4.13)

Asaresult, the fermionic functions are expanded in the following Fourier series:

1 :
p(t,X) = \/:L3 Z a(wn, k)el(wnr—kx)
f o ; K (4.4.14)
(,0*(7,’, X) - a*(a)n, k)efl(u)nr— X)
o
where
wn=21(n+1/2)/B ki = 2mn;/L nnez. (4.4.15)

Formally, the action functional for fermionic systems looks the same as for bosonic systems (4.4.9). The
diagram techniqueis also quite similar and has the following basic elements:
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. . w, k > -1
Free two-point Green function: _ Go = (ia) _ ;_m + M)
w1, kg w3, k3
Two-particle vertex: >< U(ky — k3) — U(ko — ka) .
w2, ko wa, kg

The only difference is that the frequencies wg/(2r) take half-integer values and that the two-particle
potential is antisymmetrized.

4.4.2 Euclidean-timerelativistic field theory at non-zero temperature

In this subsection, we consider the calculation of temperature-dependent quantum effects in relativistic
field theories at non-zero temperature. To illustrate the theoretical techniques, we use, at first, the theory
of asingle scalar field ¢. Without any loss of generality we assume that we work in the rest frame of the
system so that a Hamiltonian approach is adequate. Further, in this subsection we shall assume that the
system under consideration isin athermal equilibrium. In this case, its Green functions are given by the
conventional thermodynamical averaging:

Gp(Xas ... XN) = (T@(XD) - PN
E TocBT@ ) - pxn))]
—BEn
= (NIT@X1) - PXN)IN) == (4.4.16)
2 ' N T e

In (4.4.16), |n) denote a complete orthonormal set of energy eigenstates of the Hamiltonian with the
eigenvalues E. AsB = 1/(kgT) goesto infinity, we recover the usual expression for the Green functions
of the scalar field, defined as the mean value of the time-ordered product in the ground state |0).

The generating functional of these thermal Green functions has the form

B
s =G G A
= Trexp{—ﬂﬁ} Tr [e T( exp h/dx1(x)<p(x) (4.4.17)

where the trace is taken over any complete set of states.

In the case of zero-temperature quantum field theory, there are two formalisms: in real- and
imaginary-time variables. At non-zero temperature, the two techniques are essentially different and the
choice of one of them crucially depends on the problem to be solved. In this subsection we shall discuss
the Euclidean-time formalism introduced by Feynman (see Feynman (1972a) and references therein)
and developed by Matsubara (1955) for non-relativistic systems, and later extended to field theory (see
Abrikosov et al (1965) and referencestherein).
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< Path-integral representation for the generating functional of thermal Green functions

The usual steps allow usto represent the trace (4.4.17) in terms of the path integral:

B
2=t v an| s [(ar [ ]

p 1 1
=m1 / Dy(X) exp{ - / dr / d3x [E(a‘ )+ Em2<p2 +V(p) — m} } (4.4.18)
0
where S g denotes the Euclidean action on thefinite ‘time’ interval [0, 8] for the scalar field . Note that
(Bi9)? = Z?zo(ai ©)2. It is seen that (4.4.18) is quite similar to the generating functional for ordinary
(Euclidean) field theory, which we considered in chapter 3, the only specific feature of Z4 consisting in
the periodic boundary condition

®(0,x) = ¢(B, X) (4.4.19)

onthefinite ‘time’ interval. The periodicity in the ‘time’ variable t implies the Fourier decomposition
- d3k :

where wym = 2rm/ 8.
Let usfirst consider the free theory. In terms of the Fourier transform, the free action S g reads

1 d3k
Soplol = 523 [ s @+ 1+ mam(kig-m (4.4.21)
m

where ¢, = ¢_m, S0 that the propagator in the momentum space has the form

1

D K= . 4.4.22
pleom. 1 w3 + k2 + m? (#4422

Its Fourier transform, i.e. the propagator in the coordinate space,

1 d3k expfi[om(t — 1) + k(x — x)1}
Dg(r —7t/,x—=x)== / 4.4.23
2 ) ﬂXm: (27)3 w2, + k2 + m3 ( )
isperiodic in the time variable:

Dp(r + B, x) = Dg(z, x) (4.4.24)

(the Kubo—-Martin—Schwinger propagator relation). This is a consequence of the field periodicity
condition. As usual, the generating functional for a theory with interaction can be written formally as

p
zﬁ[j]zexp{—/o dr/d3xv(;—j> }zo,ﬁ[j]. (4.4.25)

The power expansion of the exponent in (4.4.25) generates the perturbation series for the Green functions
of the thermal scalar field theory.



228 Path integralsin statistical physics

<& Effective potential and critical temperature

To study the behaviour of a system with a variation of temperature, it is convenient to use the so-called
effective potential. In general, this can be defined in the zero-temperature quantum field theory as well.

e Consider I'[¢], the functional Legendre transform of the generating functional W[J] of connected
Green functions. As we have explained in section 3.1.5, I'[¢] generates the one-particle irreducible
(OPI) Green functions. Besides its purely technical merit, the functional T'[¢] has a direct physical
meaning, having the interpretation of the quantum generalization of the classical action of the model
under consideration. For this reason, it is termed the effective action of the theory.

To explain this, recall that the initial generating functional Z4[J] satisfies the Schwinger equation (cf
section 3.1.5, equation (3.1.143)) which can be rewritten as follows:

8S[¢]>‘ J Zg[J]=0 4.4.26
[(WX) IRECIETCE (24.26)

where ¢ (X) is substituted by the operator (we explicitly recover the Planck constant # needed for further
discussion)

¢ =
Using therelation Z4[J] = exp{W[J]}, the Schwinger equation can be presented as
5S[¢]> ‘
+J 1=0 4.4.27
[( 000) s (x)] (44.27)

where

= - i (W 8
PO =~ (M(x)‘w(x))

§2W 8
¢ (X) '/yaj(x)éJ(y)5¢(y)
-1
82r 8
i - 4.4.28
900 +i f y<a¢>(x>5¢(y>) 3¢(y) e

and 1 isthe unit (trivial) functional (i.e. (§/8§J)1 = 0). On the other hand, the properties of the Legendre
transformation imply (cf section 3.1.5) that

_or
Sp(x)’

The comparison of (4.4.28) and (4.4.29) yields a rather cumbersome equation for the functional I'[¢],
which in the classical limit gives

J(X) = (4.4.29)

f!szo I'l¢] = Sl (4.4.30)

This limit justifies the name effective action for the generating functional I'[¢] for OPI-Green functions.
Note, however, that while S[¢] is the integral of alocal Lagrangian density, the quantum effective action
is highly non-local:

— 1
I'lg] = Z m! / d*xy - d*xm @ (x0) -+ S Xm)Tm(X4, - . ., Xm) (4.4.31)
m=0 ’
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(here T'm(X, ..., Xm) are m-point OPI-Green functions). We can give a quasi-local form to I'[¢] by
expanding each field ¢(x;), j # 1 about the point x = x; and then by integration over al but x = x;
variables:

I'¢] = /d“x [—U(¢) + %Z(q&)aﬂqba“qb + terms containing derivatives of the order > 4] (4.4.32)

where U (¢), Z(¢) arefunctionsof ¢. Thelimit of U (¢) isthetotal classical potential Ug (¢):
lim U (@) = Ua(@) = Im2¢? + V(¢) (4.4.33)

where V (¢) defines a self-interaction of the scalar field.
e U(¢) isthe guantum generalization of thisclassical potential and is known as the effective potential.

The effective potential can be isolated in the full quantum theory by taking the mean field ¢ to be
constant in spacetime (recall that ¢ denotesthe mean field ¢ = §W[J]/8J, in distinction from theinitial
dynamical field ¢, cf (3.1.154) and (3.1.155)). For such ¢, only the effective potential remains in the
series (4.4.32), irrespective of the magnitude of 4. For a system in a spacetime box of volume L3 and in
the case of constant ¢, we have

I'l¢] = —BL3V (¢). (4.4.34)

Note that the effective potential is numerically the same quantity in both Euclidean and Minkowski
(real-time) variants of quantum field theory. For finite-temperature Euclidean field theory, the effective
potential isidentical to the conventional thermodynamic free energy.

In general, the calculations of most interest are of an effective potential Ug (the subscript g indicates
that we consider a theory at non-zero temperature) for systems that possess symmetry-breaking at zero
temperature. Then, we expect a restoration of the symmetry as temperature increases. As we shall show,
afinite-order calculation in the loop expansion is sufficient to show that this expectation is correct.

L et us consider the simplest scalar ¢*-theory with the classical potential term

1 A
Ud(p) = m 0%+ a Z ot (4.4.35)
As we learned in section 3.2.8, at zero temperature and for m? < 0 the reflection symmetry ¢ — —¢ is
broken. We anticipate that, at high temperature, this discrete symmetry is restored.
The stationary-phase method gives the foll owing one-loop approximation expression for the effective
potential:

L 1
U (@) = Ua(e) + — Z/ g In(k? + w2 + M?(¢)) + U Y (4.4.36)

where M2(¢) = U gq(@) andUg D isthe one-loop renormalization counterterm. The sum over nin (4.4.36)
has the general form

f(E) = Z IN(E? 4 »?) (4.4.37)

and diverges. To extract its finite part, let usfirst f| nd its derivative

af (E) E
o =
oE ;Ez—i-w%

E
=2) & iy

_ 28 ( eﬁE1+ 1) (4.4.38)
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Here we have used the result (Gradshteyn and Ryzhik (1980), formula 1.421.4)

o0

X 1 1
nXZ:l 22 = "o + En coth(mr x). (4.4.39)
The integration of (4.4.38) yields
f(E) = 2B[3E + B~ In(1 — & "F)] + constant (4.4.40)

and inserting this result in (4.4.36), we obtain finally

U™ (9) = Ua(@) + (UsZo(@) + U (9} + WP (9). (4.4.41)

In this formula, the termsin the curly brackets give a diverging contribution, independent of temperature
(and hence it can be calculated in the usual zero-temperature quantum field theory) together with the
corresponding counterterms. The temperature-dependent contribution is given by the integral

1 [ d%
(1) _ -
Wg™(9) = 5] @3
Note that this temperature-dependent addition to the one-loop effective potential is ultraviolet finite.
For small g (high T), the integrand in (4.4.42) can be expanded in the power series (high temperature
expansion); this gives

In(1 — e PEK), (4.4.42)

M2(¢)
24

The net result for the compl ete one-loop effective potentia (after an additional shifting of the originto the
point U él) (¢ = 0)) can bewritten in the form

WiV (@) = —m%90(ks T)* + (ks T)% + O(T). (4.4.43)

1 T2 A
Us"¢) = 5m? (1 - T_CZ) 02+ 0 (4.4.44)

where the critical temperature T is given by

o 24m?
>
2KE

2= (4.4.45)
Recall that we study the model with spontaneous symmetry-breaking at zero temperature (and, hence,
with m? < 0). At temperatures T < T, the one-loop potentia retains its degenerate minima. As T
increasesto T these minimamove continuously to the origin ¢ = 0, becoming coincidentat T = T¢. The
restoration of symmetry, with asingle minimum at ¢ = 0, takes place as the temperature becomes higher
than the critical temperature. This behaviour correspondsto a second-order phase transition (in contrast
to afirst-order phase transition in which the minimajump discontinuously to the originat T = T).

Unfortunately, this picture of the phase transitions as being very illuminative is a bit oversimplified.
The signal of this oversimplification comes from the fact that the obtained effective potential contradicts
the general property of effective potentials, i.e. the convexity.

Theorem 4.1 (Symanzk). The effective potential is convex even if the classical potential Vg is non-convex
(e.0., corresponds to the spontaneous breaking, see figure 4.1) (Symanzik 1964).
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Proof. To prove this statement, let us start from the generating functional (in the Euclidean space) with
the constant source j and in afinite volume L3:

: 1 e
Zglj1= /D(p exp{ - ﬁ[%,ﬁ[fﬂ] - J/ d‘L’/ dX¢(X)]}. (4.4.46)
0 L3
Definingw(j) as
Zgljl= exp{—%w(j)Ls} (4.4.47)
we obtain

(o L) ([ f )] e

where the averaging (- - -) is defined with respect to the Euclidean (Wiener) functional measure:
I Do) exp|~F(Seplel - § J dr fisdxe)] Flel

(FloD) = - —
S Do) ep |~} (Seplol - [ dr fisdxp))

(4.4.49)

Applying the Cauchy—Schwarz-Bunyakovskii inequality, (( / )% > (( i ©))2, to equation (4.4.48), we
find

92w
— <0 4.4.50
T (4.4.50)
and using the particular case of the general properties of two-point OPI functions (cf (3.1.157)), i.e.
U (4.4.51)
g2 9j2 o
we finally obtain the desired result:
32U
— >0 (4.4.52)
92

(for any finite L3).

_ o _

Note that this proof and the implication of the statement to quantum field theory are rather formal
(we did not take into account possible divergences and did not discuss the L2 — oo limit). However,
this ‘naive’ formalism leads to the correct result (Griffiths 1972). The characteristic form of the effective
one-loop potential for aclassical potential with two minimais depicted in figure 4.1.

To resolve the apparent contradiction between ‘naive’ one-loop calculation, spontaneous symmetry-
breaking phenomenaand the convexity of the effective potential, we should take into account both extrema
of the double-well classical potential. Indeed, if m? < 0, the action possesses two extremal points ¢-(j)
at constant j, which are solutions of the equation

A+ (93 — $3) = 6] (4.4.53)

where ¢g = 6|m?|/A. Inthe j — 0 limit, Se[¢.] = Se[¢—] and the extremal points contribute
equally. To calculate the corresponding path integral we first have to isolate the zero-frequency mode
(cf sections 3.3.2 and 3.3.3). Using the separation

#(x) = a+ vVheX) (4.4.54)
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Figure 4.1. The effective potential Uél) (¢) for a scalar theory with a double-well classical potential Vg (¢). The
effective potential is convex and coincides with the classical potential only outside the domain of its extrema.

and the decomposition of unity
1= /_Ooda8<a—m'/0 dt/Lstgo(x))
1 B
dadaexp{ia(a—m/o dr/Lngga(X)>}

-1

we can write the generating functional in the form
1 B
Zp()) = /dadaDé(X) eXp{—ﬁ(SE,ﬁ[a—i-\/ﬁé%]— jaﬁL3)+ia/ dr/gaxéf}
0 L
3
= / daK(a) ap{—TL(ud(aHugl)(a)— ja), (4.4.55)
(4.4.56)

where
B 1
K@) = /daDs exp{/ dr/ dx [ias(x) - §$<—V2+mz+ —Aaz)s
0 L3
— —Vhrag® — =i )
gk’ — gk “
Using the semiclassica approximation, the behaviour of the mean field ¢(j) in the oneloop
approximation as a function of the source j can be found:
: L3¢
#(j) ~ ¢otanh | (4.4.57)

It is easy to verify that the behaviour of ¢ (j) is different from that for the classical case (i.e. determined

from the classical Lagrangian with the external source) but becomes coincident with the classica
behaviour in the region ¢ > ¢g (i.e. outside the domain of the extrema of the classical potential). The
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most important point which we have been aiming to illustrate is that despite the convexity of the one-loop
effective potential, we still have the symmetry-breaking since ¢ (j) — +¢pasj — +0, asitisseen from
(4.4.57).

At non-zero and increasing temperature the potential has the flat-bottomed ‘bucket’ profile as
in figure 4.1, the base of which gets narrower as T increases and the disappearance of the flatness
signals about the restoration of the symmetry. Note that there are arguments that a more rigorous
description of this phenomenon requires the consideration of more complicated (than just a constant)
field configurations, in particular of the so-called domain walls (de Carvalho et al 1985).

4.4.3 Real-timeformulation of field theory at non-zero temperature

In the preceding subsection, we considered the static characteristics of thermal systems in equilibrium.
The equilibrium is achieved as aresult of adynamical process of energy exchange between the fields and
the reservoir in which they are immersed. In these calculations, the underlying dynamics was hidden by
the imaginary-time formalism. Although the results of the Euclidean-time approach are correct, in order
to obtain more detailed information about systems at non-zero temperature, it is desirable to consider the
real-time formulation.

Any approach to areal-time description leadsto the doubling of fields, aswell as of the corresponding
Hilbert spaces of states. To understand this point qualitatively, let us consider a thermal reservoir
maintaining a certain number of excited quanta in a system. An exchange of energy can come about
by two processes: energy is absorbed by the system

e either by exciting new quantaor
e by annihilating the (Dirac) ‘holes’ of particles maintained by the reservoir.

The appearance of the new possibility of energy absorption in the case of non-zero temperature is
schematically depicted in figure 4.2. The two reverse processes are responsible for the emission of energy
by the system. While in the imaginary-time formulation these two types of process are inseparable, in
the real-time case they lead to a doubling of the fields. This formalism has been developed mainly by
Umezawa with co-authors (see Umezawa et al (1982) and references therein).

< Introductory example: the harmonic oscillator with doubling

To illustrate the technique, let us consider the much simpler problem of a free harmonic oscillator. The
doubling implies that we should consider two pairs of mutually commuting creation and annihilation
operatorsa’, a and b, b which act in the direct product Hilbert space spanned by the states

Iny|v) = (N)~Y20H~Y2@""ow""|0)/0).

Then the thermal averaging (AT, 2))) (cf (4.4.16)) for any operator A constructed froma’ and @ can be
presented as the ordinary quantum-mechanical averaging:

(A@" a)p = (BIA@", 3)18) (4.4.58)
with respect to the state | 8)
Y aexp{—BEn/2}In)In)
/X ep(—BEn)
_ Y exp(—pn/2j(nh~*@"H"(0""0)[0)

vV Zn exp{—,Ba)n}

= (1— e P*) Y2 expe #*/2a"0"}|0)|0) (4.4.59)

1B)
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Figure 4.2. Schematic presentation of energy absorption by a system at zero temperature (a) and the two ways of
absorption at non-zero temperature (b).

(En isthe harmonic oscillator energy: E, = (n + %)a)).
In the product Hilbert space, time trandation is supposed to be generated by the Hamiltonian

H = wa'a— wb'd (4.4.60)

which isinvariant with respect to the canonical transformations generated by the operator
L=io@b—2a'bh (4.4.61)

8 = dlae 't = (cosh0)a + (sinh6)b’
+ , - (4.4.62)
3y = €-ae 't = (sinh6)b + (cosh)a’.

Such canonical transformations are well known in the literature as the Bogoliubov transformations. The
state |3) can be considered as a result of the corresponding unitary transformation:

18) = €110)|0) (4.4.63)
with the appropriately chosen parameter 6. The latter can most easily be defined from the equality

(@a"y = (pjaa’|g)
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Figure 4.3. The contour in the complex-time plane for non-zero temperature in the imaginary-time (a) and in the
real-time (b) formalisms.

which, after simple calculation, givesthe relation
cosh?§ = (1 — e Fo)~1.

Thedoubletsa, b' and b, at allow usto describethe processes of energy exchangein thethermal bath
mentioned earlier: the oscillator system absorbs energy either by the excitation of additional quanta (&™)
or by the annihilation of holes of particles maintained by the thermal reservoir (6); the energy emission
similarly involvesa and bf. The proper creation and annihilation operators that describe the excitation

and de-excitation of the system are the operatorsﬁg, ag, given by the Bogoliubov transformation.

<& Generalization to field theory: path-integral approach

The generalization to field theory is straightforward, though it requires some caution related to the
transition to infinite volume. We shall not discuss the operator thermal formalism for field theory (see
Umezavaet al (1982)) using instead a shorter way based on the path-integral approach and ageneralization
of the Euclidean (imaginary-time) thermal theory (Niemi and Semenoff 1984).

In the Euclidean formalism of the preceding subsection, we performed the integration in the complex
plane of the time variable fromt = Otot = —iB. The periodicity of the fields enables us to generalize
thisinterval to [—tg, —tg — i8] for any real tg. To obtain the real-time theory, we need to choose a different
contour C = C1 + C, + C3 + C4 (seefigure 4.3) with the same endpoints but which includes the real-time
axis (or at least a very large part of it). The causality condition imposes the constraint Imt < 0 (cf the
ie-prescription which we discussed in chapter 3), but there is still considerable freedom in the choice of
possible contour. The choice depicted in figure 4.3(b) is technically most convenient. At the end of the
calculation, we should take the limit tg — oco. We shall see that the field defined on the piece C, can be
interpreted as the second field p2(t, X) = ¢(t —18/2, X). Asthe temperature T — 0, the contour C»
retreats to infinitely negative imaginary time and the ¢» field completely decouples from the theory.

The generating functional formally has the usual form

Zg = /D(p(r, X) Dr(z, X) exp{i/ dr/d3x(n8c(p—7-[+j<p)}
C

:‘ﬁ_]'/D(p(r, X) exp{i/ dt/d3x Lp) + j(p)}. (4.4.64)
c

Here 9. denotes the derivative in the direction of the contour C. The field ¢ is integrated over all
configurations periodic on C. The Lagrangian density on C can be written as

L) = —30(0c + Mg + V(p) (4.4.65)
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where O = 82 — V2. The path integral (4.4.64) contains the fields with non-physical arguments. Thisis
not convenient for practical use and the next step isto recast it asan integral over fields at real times.

First, we note that the Gaussian integration for the free-field Lagrangian in (4.4.64) can be performed
in the usua way, with the result

Zop = exp{ — 3 fc d*xd*y j(x)Dg(x — )] (y)} (4.4.66)

where Dg(x — y) isthe thermal propagator on the contour, satisfying

(Oc +m?)Dg (X — y) = —8c(X — ). (4.4.67)

Here §¢(x) o 3c(1)8(X), the variable t being defined on the contour C. To find the explicit form of
Dg (x), let us make the partial Fourier transform

~ d3 )
Dﬁ(l’, k) = / (zn);geilkx Dﬁ (T, X) (4.4.68)

so that Dg(r, k) satisfies the equation

(02 + E2(k))Dp (7, k) = —8¢(7) (4.4.69)
E2(k) = k® + m?. (4.4.70)

It isalso helpful to decompose the Green function into retarded Df;) and advanced D/(Sa) components:

Dp (X — ¥) = fe(tx — 7y) Dy’ (X — y) + bc(ry — ) DR (X — Y) (4.4.70)

whose partial Fourier transforms satisfy the equations

(02 + Ez(k))[N)(Ba’r)(t, k) = 0. (4.4.72)

These equations show that D®” (<, k) are linear combinations of €E7 and e~'E*. The coefficients of
these linear combinations are found from the condition

Dy (zx — 1y —iB. X — ¥) = D§ (tx — 7y, X — Y) (4.4.73)

which, in turn, follows from the periodicity of ¢ and the Kubo-Martin—Schwinger relation (4.4.24).
Equations (4.4.72), (4.4.69) and (4.4.73) imply

BY (. k) = f(E)[eiE" 4 gET+iA)]

DY Er | g iEG—i (4.4.74)
D,B (T, k) = f(E)[é f+e 1E(t |ﬂ)]
i 1
"B = Ea—ers (4.4.75)

The key observation for further development is that Dg(t1 — 12, K) — Oastg — oo if 71 lieson Cy
or Cz and r2 lieson Cz or C4. Thismeansthat Z¢ g becomes separable in thislimit:

Zolj1= Zoplj; C1C2l20,l]); C3Cal (4.4.76)
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in which the time integral in the individual factors is restricted to the appropriate parts of the contour
(Xo, Yo lie on either C1, Cy or C3,C4). For sources localized in time, it can be absorbed into the
normalization astg — oo, and we can identify Zg g[j] with Zg g[j; C1Cz] aone.

Thenext step isto define j1(t, x) = j(t, X), ja2(t, X) = j2(t —i8/2, X), and to rewrite the exponent
in (4.4.66):

dxdy  00Dpx = )] () = [ dxdy 1a0)Dan(x = Yoy, (4.4.77)
C1Cy Cy

In the integral (4.4.77), as distinct from (4.4.66), al the functions are defined for real time. The matrix
propagator has the components:

D11(X —y) = Dg(x —y)
D2o2(Xx —y) = Dg(y — X)

4.4.78
Dia(x — y) = =D (X0 — Yo + iB/2, X — Y) (@479

D12(x — y) = —Df(Xo — Yo — /2. X — ¥)

(Xo and yp arereal). The componentsof the propagator are determined from these definitionsand (4.4.71)—
(4.4.74). The full momentum-space propagator Dg (K) reads

Do = (D0 0\ _2nibdE-m) (1 e
Y= 0 =Dk efE _ 1 B2 1

where Dc(k) is the usual zero-temperature propagator (3.1.93) for a scalar field (in momentum
representation). The finite-temperature effect is only felt on the mass-shell. Although such terms
may seem surprising, they are the only way in which the defining relation of the Green function,
(Ox + m?)D11(X) = —8(x), can be sustained.

To recast the path integral in a double-field way, let usfirst write Zo g as the path integral

(4.4.79)

+PFosli jol = / D1 Dg2 exp{ i / dx [LgaDlen + jwb]} (4.4.80)

(D;b1 istheinverse operator with respect to the matrix propagator). For aninteracting theory in thelarge-to
limit we can write

L . .8 .
Zglj1, jol = eXp{—'/ dXV(—|8—-)}ZO,ﬁ[J]
c J
-l [ () )t
= exp e 5 5z 0,811 12

[ Perve exp{ ~i [ axpaDaon — Ve + Viga + jbm}. (4.4.8)

The minus sign of the second termsin the exponents occurs because of the reverse direction of the contour
Co.
Note that only those diagrams in which the field ¢1, but not @2, appears on the external legs have a
physical meaning. Hence, the p»-field is akind of ghost field, only occurring in theinterior of diagrams.
Thus, we have arrived at the double-field formulation of the scalar field theory at non-zero
temperature using the path-integral approach. A similar analysis can be carried out for fermions. The
doubling that comes from the deformation of the contour is again inevitable.
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4.4.4 Pathintegralsin thetheory of critical phenomena

For a finite system, the partition function Z4 is an entire function of § = 1/(kgT). However, once
the infinite volume limit is taken the free energy can have singularities. When the singularities occur
for real positive temperature T, the system has phase transitions. The phase transitions and the related
spontaneous symmetry-breakings abound in modern condensed matter physics.

If there are other external parameters in the problem, such as a magnetic field, the location of the
points of phase transition can depend on these parameters. A plot of the location of the points of phase
transition is called a phase diagram. One of the important tasks of statistical mechanicsis the derivation
of phase diagrams for realistic systems. Phase diagrams are quite dependent on the specific details of
the system under consideration. However, once the locations of the points of phase transition are known,
there is aremarkable universality in the behaviour of the system near the critical point.

There are many phenomena which occur at an isolated critical temperature T and the theory of
critical phenomenarelates them together. Some of the principal phenomenaare:

e thesingularitiesin the free energy;
e theexistence of spontaneous symmetry-breaking;
e thebehaviour of correlation functions at long distances.

These are related through the construction of the scaling limit and scaling laws. Before a discussion of
the path-integral technique, we shall briefly recall some general characteristics of phase transitions.

<& Singularitiesin thefree energy

To discuss singularities in the free energy, it is convenient to define the specific heat ¢ as

92 f

c=-T—;
aT2

(4.4.82)

where f o F/LY (F isthefree energy). Then the simplest generic singularity the specific heat can have
at acritical temperature Tc is

C~ AglT —Te|™“. (4.4.83)

The exponent « is referred to as a critical exponent.

<& Spontaneous symmetry-breaking

According to our discussion in section 4.4.2, we consider the mean value

SWIJ]

o) = 5 (X)) (4.4.84)

= lim
L—>oo

(cf (4.4.57)). In lattice spin systems, the external source j may have the direct physical meaning of the

external magnetic field h. Then the mean value ¢ (T) dzd limnh—o ¢ (h) istermed the magnetization.

If j = O, interaction (4.4.35) isinvariant under ¢ — —¢ and thus, if ¢(j) iscontinuousat j = 0,
it followsthat ¢(0) = 0. If T > T, thisisindeed the case. However, because we are considering the
L — oo limitindefinition (4.4.84), thereisnoreasonthat ¢ (j) hasto be continuousat j = 0 and, indeed,
for T < T¢ the continuity fails.
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As we have learned in the preceding subsection, typically as T — T, the mean value ¢ (T) o
limj_o¢(j) (in particular, spontaneous magnetization in the case of a spin system) vanishes. Thus we
define a second critical exponent 8 as

O(T) ~ Ag(Te — T asT > T, T<Te. (4.4.85)
Another quantity related to the mean value ¢ () is the susceptibility x:

def 06 (j)

. . (4.4.86)
9 lj=o

This susceptibility also has a singular behaviour at T = T; and we parametrize this in terms of the
exponent y as
x~ AT =T T- T (4.4.87)

In the case of amagnetic external field, x is the usual magnetic susceptibility.

<& Correlations

Not only the bulk thermal properties of the system have singularities at Tc, but also the corresponding
phenomenain the correlation functions. Consider, for example, the two-point correlation function (Green
function) in the infinite volume limit:

G(X) = (¢(0)p(X))p. (4.4.88)

When T < T, wefindthatas R = Y% ; X2 — oo, the correlation approaches the limiting value of ¢2

exponentially as

C®,T)
RP

G(X) ~ ¢? (1+ exp{—R/£@6, T)} +) (4.4.89)

where &(0, T) iscalled the correlation length (6 denotes the set of angular variablesin a polar coordinate
framein the d-dimensional space). Similarly, when T > T,

c'®o,T ,
(Rk ) exp{—R/§° 0, T)} +---. (4.4.90)

G(X) ~

The correlation lengths depend on T and divergeas T — T, and thus we define the exponent v as
EO. )~ AT =T (T — To). (4.4.91)

The divergence of the correlation lengthas T — Tcisasignal that expressions (4.4.89) and (4.4.90)
break down at T and instead it isfound that for T = T, the correlations decay as a power law

Ac(0)

GCX) ~ ~i—zmm

(R— o0) (4.4.92)

whered isthe dimensionality of the system and 7 is called the anomal ous dimension.
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<& Scaling limit and scaling functions

Of dl the phenomena discussed earlier that happen at an isolated critical temperature T the most
important is the divergence of the correlation length £. The physical meaning of this divergenceis that at
the critical temperature the physical scaleisinfinitely large compared to scales that appeared at the stage
of the initial formulation of a problem (e.g., of interatomic spacing in a crystal body) and thus it is most
natural to renormalize our length scale from the initial characteristic length (e.g., the atomic one) to the
observed physical length:

Xi
= — 4.4.93
TR0, (4499
(6 denotesthe set of values of the angular variablesin theith coordinate direction). The limit
T->T; Xj — oo x; fixed (4.4.99)

isthe analog of the mass renormalization (chapter 3) and is part of what is called the scaling limit.

If the limit (4.4.94) were the only step, (4.4.89) would vanish because the factor ¢2 (the spontaneous
‘magnetization’) vanishes and the factor C(9, T) is found to go to a constant independent of T and 6.
Consequently, we also have to divide the correlation function G(X) by ¢2 and define the renormalized
Green function as

Gr(r) = lim ¢7°G(X) (4.4.95)
scaling

wherer? = Y°; x? and by limgaing we mean (4.4.94). The process of dividing G(X) by ¢ is called
wavefunction renormalization.

<& Scaling laws

Thus far, the theory discussed may be considered to be descriptive and all the exponents and
functions introduced may be considered to be independent, subject only to the general requirements of
thermodynamic stability. However, if we make an additional assumption that there are no other length
scales in the problem other than the atomic length scale of definition and the physical length scale of
the correlation length and that these two scales join together smoothly, we find that this theory makes
predictions about the relation between critical exponents. These relations are known as scaling laws.

Some more assumptions and reasonabl e approximationseven allow us to obtain numerical valuesfor
the critical exponents on the basis of the scaling limit. We shall present such a calculation using the path-
integral method. In this case, it is more convenient to carry out the scaling transformations of momentum
variables (after the Fourier transform of the fields under consideration), because this method is based on
separate integration over the lower and higher modes of the fields (cf section 3.3.1).

<& The scaling transfor mation in the formalism of path integration
Let us consider a statistical system in abox L3 described by the action

1 1 7 g
_ 3 - 2 a2 _ P2 Y 4
S= /drd X (2(8rg0) + 2(8|(p) > ¢ + 4!(,0 ) (4.4.96)

where x € L3and 0 < t < B. This standard ¢*-functional describes a real scalar field at finite
temperature T. If the coefficient 1 in (4.4.96) is negative, the action is negatively defined and a phase

transition isimpossible. If 1 > 0, the system may undergo a phase transition at some critical temperature
Te, below which anomalous mean values (¢(t, X))g # 0 appear. To study the critical exponents for the
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phase transitions, we shall again use the method of the separate integration over higher and lower modes
(Popov 1983) (cf section 3.3.1) in the Fourier expansion of thefield ¢:

1 .
> TG, k). (4.4.97)

V'3L3 k,w

Now, we define the functional S((ggf) by the integration over the higher modes ¢ (w, k) with v # 0 and
withw =0, k > ko:

(T, X) =

(g)ff) = — In/ [T1]do@ e (4.4.98)

0 w=0

The general form of the functional S((ng) reads as

1
(g;f) =co+ 5/ d% uz(K)p(K)p(—k)
k<kg

00 2n 2n
1
o[ (]‘[ddkago(ka))um(kl,...,an)a(E :kb) (4.4.99)
n=2 ka<ko a=1 b=1

that is, as the sum over the even powers of thefield ¢ (k) = ¢(0, k) and with the cutoff of the integrals at
the upper limits. The constant ¢y is not essential for further calculation.

We are going to calculate the asymptotics of the two-point correlator on the basis of the scaling
hypothesis. Thisaim is achieved through the following steps.

(i) Consider the coefficient function uz(k). Let thisfunction be of the form
U2(K) = Uzo + Uzok? + - - - (4.4.100)

in thevicinity of k = 0O (i.e. it can be expanded in even powers of the momentum variable). After the
scaling transformation
(k) = k) (4.4.101)

where the parameter ¢ is chosen so that
Pup=1 (4.4.102)

we arrive at the functional S of the form (4.4.99) in which

up(k) = K + k24 .. (4.4.103)
(eff)
(K issomenew constant). Now, |et usintegrate the functional e 0 over o(k), withkg/2 < k < ko:
Sl / [1 d%@.k expi—S§"). (4.4.104)
ko/2<k<kg

The functional S((fff) differsfrom S((S;f) by the value of the constants cg and by the actual form of the
coefficient functions ugp, aswell asby the upper limit of theintegrals (they are cut off at ko/2 instead

of ko, asin ngf)). Next, we make the transformation

k— 2k ok — ¢(2K) (4.4.105)
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converting the domain of the momentak < ko/2 back into k < kg and again make the transformation
(4.4.101), so that the lowest non-trivial coefficient function in (f;f) obtains a form analogous to
(4.4.103):

U () = Ky + K2 + - . (4.4.106)
Thus, the path integration (4.4.104), together with the subsequent change of variables (4.4.101) and
(4.4.105) convert the functional (S((ggf) — Cp) into the functional (S((‘f;f) — 1) of the same form, but
with modified coefficient functions.
We can expand these transformations to other coefficient functions uz, and consider them as a
definition of the nonlinear transformations

uktD = Mu®) (4.4.107)
of the sets of coefficient functions:
u® =, u,ul, ) (4.4.108)

The scaling hypothesis (see page 240) implies the following natural assumption: along the line of a
phase transition, the multiple M-transformations have, as a limit, a stationary set ug of coefficient
functions:

ug = lim Mu©@]  ug = M[ug]. (4.4.109)

Indeed, the stationarity meansthat the rescaling of the momenta, k — 2k, isequivalent to the scaling
transformation (4.4.101) (cf also (4.4.95)).
Consider the two-point correlator D (k):

D(k)S(K + K) = (p(K)e(K))p. (4.4.110)
L et the stationarity condition (4.4.109) betrue at n > ng for some ny, i.e. for the momenta
k < 27"k (4.4.111)

(k = |K|, ko = |kol|). For an arbitrarily small k and an integer n, such that the momentum k; = 2"k
belongsto the interval

2707 ko < kg < 27ko (4.4.112)
we have (due to the stationarity condition (4.4.109))
(p(0e(K))p = £ (p(kDp(k))p (4.4.113)
or, for the function D (k),
D(k) = ¢ 227D (ky) (4.4.114)

(d isthe space dimensionality). Rewriting (4.4.114) as
D(k)k@Ne/In2-d) _ p(jp)K(ZIne/ 2= (4.4.115)
we finally obtain the asymptotics
D(k) — ck(d=2In¢/In2) (4.4.116)
The Fourier transform gives the corresponding asymptotics in the coordinate space:

D(r r2Ing/In2—2d) 44117
(N —
— 00
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A comparison with (4.4.92) immediately gives an expression for the anomal ous dimension:
n=2+d— . (4.4.118)

Qualitative arguments based on the linearized form of the M-transformation, that is
u®td —ug = Au®tD —ug) (4.4.119)

(K is the linear operator obtained by the linearization of M), alow us to derive the expression for the
correlation length defined in (4.4.89) or (4.4.90) (see problem 4.4.2, page 253):

E(T) ~ (T = To~In#/Inka (4.4.120)
where A1 isthe largest eigenvalue of the operator A. Thus, the critical exponent v is given by

In2
p= 2 (4.4.121)
Iniq
Finally, a similar consideration gives the expression for the critical exponent y, which defines the
behaviour of the susceptibility (cf (4.4.87)):

_ 2In¢ In2

=— —d—. 44122
v Iniy Iniq ( )

Thus, the separate integration over the higher Fourier modes, together with the hypothesis about the
relation between the phase transition of stationary points of the M-transformations, allow us to express
the critical exponents through the parameters of these transformations. For an explicit calculation of the
critical exponents, we need a further approximation.

Let us neglect al the coefficient functions but uz and u4 and take u(zn), uﬁln) inthe form
U’ =K+ Ky u’ =Qq (4.4.123)

(Kn and Qp, are some constants). Then the M -transformation for u(zn), ufln) can be written asthe following

series:

@
ug™ k) = ¢22-¢ (u;”>(k/2)+ y— + - )
Uy

(b) (4.4.124)

ug k) ~ U () = ¢f2 (ui{‘)+ + - ) :
yn 4

These series are obtained as a result of integration over the selected set of modes as in (4.4.104). We
restricted the perturbation series only to diagrams of types (a) and (b). In the approximation (4.4.123),
i.e. with the constant ufln), diagram (a) does not depend on the external momentum. Requiring that the
coefficient at k2 be equal to unity, we find the scaling parameter ¢ which enters the formulae (4.4.118)
and (4.4.122) for the critical exponents:

¢ =212 (4.4.125)
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After this choice, equations (4.4.124) for the coefficient functions (4.4.123) acquire the following explicit
form:

ud"™ P (k) = k2 + Kny1

Qn dk
—ie 4(K PR / gk
" 22m)9 ko 2)<k<ko K2+ Kn

u"P (k) ~ Qnia

3 Q2 dk
— k2 +4 _ > n / o
(Qn 2 (27T)d> (ko/2)<k<ko (KZ + Kp)?

(note that the factor 3 in the second equation appears due to three diagrams of type (b) with different
positions of the external momenta, while the factor % is the symmetry factor of the diagrams). Thus, in
the chosen approximation, the M-transformation reduces to the nonlinear transformations of the constants
Kn and Qp.

Equations (4.4.126) show that d = 4 is the specific (critical) value of the space dimensionality for
the following reasons.

(4.4.126)

e Atd > 4andfor small positive ug, formulae (4.4.126) give the inequalities:
0 < Qny1 < 2*79Q, (4.4.127)

if 0 < Qo <« 1. Therefore, Qn — 0 and hence K, — 0. As aresult, the action S™ in the limit
n — oo becomesthe free-field action:

S —— 1 | d9%k2p(k)p(—k) (4.4.128)

n—o00 2

and all correlation functions, thermodynamical functions and critical exponents coincide with those
for the free-field theory. In particular, for the critical exponentswe have:

y=1 (4.4.129)

Nl

77:0 VvV =

e Ford = 4, the M-transformation (4.4.126) also leads to zero values of K and Q and the critical
exponentstake free-field theory values.
e Ford < 4, anon-trivial stationarity point defined by the equations appears:

3 dk -1
o {2
R ) 22m)9 J o 2)<k<ko (K2 4+ Kn)?

1 (4.4.130)

4 dk dk -

9 (ko/2)<k<ko K=+ Kn | Jg/2)<k<ky (K& + Kn)
The linearized operator A hasthe form of a2 x 2 matrix:
4_ 29 I dk 2 / dk

(2m)d J(ko/2)<k<ko (K2+Kp)2 2m)d J(ko/2)<k<ko K2+Kp 4.4.131
24—d3Q2/ dk 24—d (1_ 3Q f dk ) ( 4. )

2m)d  J(ko/2)<k<ko (K2+Kp)3 (2n)d J(ko/2)<k<ko (K2+Kp)2

At d < 4, the largest eigenvalue A1 of this matrix differs from the free-field value (i.e. A1 = 4)
and, according to (4.4.121), gives the critical exponent v which also differs from the free-field value
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(4.4.129). Note that the exponent  is still zero in this approximation as in free-field theory (cf
(4.4.125) and (4.4.118)).

The distinguishing role of the dimensionality d = 4 inspired Wilson and Fisher (see Wilson and

Fisher (1972)) to develop a series perturbation expansion in the parameter ¢ u 4 — d. This expansion

implies the extension of the usual diagram techniques to spaces of non-integer dimensions. In fact, this
is not completely new: we have aready mentioned such a possibility in chapter 3, in the context of
the dimensional regularization of quantum field theories (see section 3.2.7). We shall not present the -
expansion in this book and refer the reader to the previously cited original paper and to special reviews
and monographs, e.g., to Ma (1976).

4.45 Quantum field theory at finite energy

In this section, we are going to discuss the path-integral formulation of relativistic quantum field theory
at finite energy, using the microcanonical distribution. This method is a natural extension of the real-time
formalism, which we have introduced in section 4.4.3.

In a canonical ensemble, the system of interest is one which is surrounded by a large thermal
reservoir such that the system is kept at a certain temperature T. This is the situation in which the
quantum field theory at finite temperature is formulated. The microcanonical ensemble, on the other
hand, is appropriate for investigating an isolated system with a finite energy E and avolume L3. In the
microcanonical distribution, all microscopic states have equal probabilities; this is based on the ergodic
hypothesis. This microcanonical ensemble is considered to be more fundamental than the canonical one
and it is well known that in the thermodynamical limit (E, L® — oo with E/L2 finite), the canonical
and microcanonical ensembles are equivalent. However, for a system at finite E and L2, there are finite
differences between these two ensembles and we should use the microcanonical ensemble to investigate
such a system.

One of the advantages of the path-integral approach is that the relation between the microcanonical
and canonical cases becomes clear and so is the procedure to take the thermodynamical limit. In this
subsection, the field theory is formulated in Minkowski spacetime (i.e. with real time) so that it can also
be used to investigate the time evol ution of the system (see Chaichian and Senda (1993) and Chaichian et
al (1994)). Thus, thisisindeed an analog of the real-time field theory at finite temperature. In order to
illustrate how this formulation works, we shall use real scalar field theory with ¢* interaction.

An example of a physical situation where these results can be applied is the early universe: the
universe does not have a thermal reservoir. At a late stage in the evolution of the universe, the use
of the canonical ensemble is justified, but at an early stage the microcanonical investigation would be
preferred. Another interesting problem would be the finite-energy effect on the phase transition in the
L andau—Ginzburg model with ¢2 and ¢* potentials and in the so-called quark bag models.

<& The path integral and the microcanonical distribution

For the path-integral formulation of quantum field theory at finite energy we shall use the ‘time-path’
method, which was discussed in section 4.4.3. We present the calculations only for the real scalar boson.
The extension to the other fieldsis straightforward.

Let us start by defining the partition function in the presence of external source j (x) at fixed energy
E:

M) = /d¢ (@, tIs(H — E)T(exp{i/d“xj(X)@(x)})Iw,t) (4.4.132)
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where T means the time-ordered product. The sum over the complete set of field configurations (trace)
is taken at a certain time t. Using the integral representation of the delta function, s(H — E) =
dZ“ exp(—ia(H — E)), (4.4.132) iswritten as

2] = /g—zei“E/dw <<p,t+a|T<exp{i/d4XJ'(X)@(X)})Icmt}

= /d—aei“ENa/Dgo exp{i/ d4x(£+j<p)}
2 C

wherewe have used €2 ¢, t) = |, t + ). The second lineisthe path-integral representation of thefirst
line. The symbol ‘C’ in the exponent in the second line means that the time path in the integration over
Xo should be chosen such that it connectst tot + « (see later). The a-dependent normalization factor is
represented by N, . Following the usual procedure, the partition function becomes

: do e . : 16 [ , N
ZMj1 = / Ze‘ EN/, exp{|/cd4x£|(i—8j (X))}exp{ - 5/(;d4Xd4X j () Dy (X — X) (x)}
(4.4.133)
where, as usual, £ istheinteraction Lagrangian and D, (x — X’) is a a-dependent propagator. Then the

properly normalized generating functional of Green functions, Zg[ ], isgiven by

Zeljl= 2117250

_ [ da e (N i 13
=] =° (ze[m)exp{'/cdXﬁ'(iaJm)}

x exp{ - iE/Cd“x d*x’ j (X)Dg(X — X) (x’)}. (4.4.134)

Since the diagrammatic structure of the last two factors with exponentialsin (4.4.134) is the same as the
ordinary generating functional in a quantum field theory, we define

= g4 19 _i_/ 4y 44y iy
Za[]]—eXp{I/Cd x£|<iaj(x)>}exp{ 5 COI xd*x" j (X) Dg (X X)J(X)}
= B, ZY[j] (4.4.135)

where B,, standsfor vacuum diagramsand Z£[ j ] representsthe diagrams connected to the external source.
Then (4.4.134) can be written as

. da ,
ZE[J]=/£e'“EpE,aZ§[J] (4.4.136)
where we have defined
PE.« = Ny By /ZE[O]. (4.4.137)
Defining the a-integrations of pg o and Z<[j] by
do ;e ) da .
PEE = zé"‘E PE«  ZElil= Zé“Ezg[J] (4.4.138)

the generating functional in (4.4.134) can be written as

E
ZE[J']=/0 dE' pg e 2] (4.4.139)
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The N-point Green function in the medium of energy E is given by the derivatives of the generating
functional with respect to external sources.

N

E
Ge(X1,..., XN) =/0 dE/PE,E—E’(H

i=1

Crill:
00 )zE,[ i1lj—o. (4.4.140)

<& Transition to the canonical partition function in the thermodynamic limit

In the thermodynamical limit, E, V >> 1 keeping E/V finite, the statistical weight pg g_g/ has a sharp
peak at E’ ~ 0. Aswe shall discuss later, the partition function (density of the field configuration) Z (Emc)

is related to the entropy Se by Z(Emc) o exp(Sg). Thusthe statistical weight pg g_g’ isapproximated in
the thermodynamical limit by

pEE-E = &XP(Se—g — Sg) ~ & FEE (4.4.141)

where Bg = dSg/0E isthe inverse of the temperature of the system with energy E. Therefore, in the
thermodynamical limit, the generating functional in (4.4.139) can be approximated as

(e.¢]
Zeljl ~/0 dE’ e PeE ¢ []1. (4.4.142)

This is nothing other than a Laplace transformation of the generating functional for Green functions,
Zg/[j]). Therefore, the right-hand side of (4.4.142) is identified with the generating functional at the
temperature 1/Be in the canonical ensemble. This shows the equivalence between the microcanonical
method and the canonical method in the thermodynamical limit.

< Evaluation of the generating functional in the case of fixed energy

Although we are going to discuss the thermodynamical limit in some cases, our main interest is in the
evaluation of (4.4.139).
Inthe case of thereal scalar boson, the propagator in (4.4.133) is defined by the differential equation:

—(3% +mA)Dy(x — X') = 8*(x — X)).

In the derivation of (4.4.133), the requirement that the boundary terms vanish gives a periodic boundary
condition:
et +a,X) =@, X), Dyt +a,x)= Dy, x). (4.4.143)

The explicit derivation of this periodic boundary condition pertainsto problem 4.4.4, page 254.

In the real-time formulation of finite-temperature quantum field theory, different choices of the time
paths define field theories which are physically equivalent, but still different, in the sense that quantities
such as propagatorsare different. We find the same situation in the finite-energy quantum field theory. The
only restriction in choosing the time path isthat it should connect acertaintimet and t 4+ «. The choice of
the time path which provesto be most convenient for real-time formulationisC = Cq + C, + Cgz, shown
in figure 4.4. This consists of three parts: C;1 connecting —t to t, C, connectingt to —t backward in time
and C3 connecting —t to —t + «. Because of the requirement of causality and the well-definedness of the
path integral, the path monotonically decreasesin theimaginary time direction by theinfinitesimal amount
¢. We will take the limit t going to infinity at the end of the calculations. As in the finite-temperature
quantum field theory, physical operators, which appear as external linesin Green functions, are assumed
to have support on the path C; and fields having support on C, and C3 are considered to be ghosts.
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Figure 4.4. The time-path C used to formulate finite-energy quantum field theory.

The great simplification resulting from the choice of this path is that the operators on the C3 path
decouple from those on the C; and C, paths. This is because, in the limit t — oo, the propagator
connecting the paths C3 (a = 1, 2) and C3 vanishes due to the Riemann—L ebesgue theorem and the
adiabatic switching-off of the external source j (x) (see problem 4.4.5, page 255). Therefore, the real-
time part C1 + Cp, which is used to evaluate the ensemble average of the time-dependent operators, and
the thermodynamical part C3 are separated. Thus we can write the generating functional of connected
diagramsin (4.4.135) asfollows:

Z8j1= 28421 2591] (4.4.144)

where Z¢® jsthe onefor fields on the path Cy. In general, we can choose any path connectingt and t + o
within the requirement of consistency of the theory and they give physically equivalent results when the
system isin equilibrium. The equivalence of the different choices of path is a ssmple consequence of the
completeness of the set of states inserted at each moment in the path integration, which is the same as the
situation in finite-temperature quantum field theory. An example of a cal culation showing the equivalence
of physical quantities obtained by choosing different pathsis suggested in problem 4.4.6, page 255.

<& The Green function and Feynman rules

Since the C1 + C; part decouplesfrom the C3 part in the limit t — oo, let us concentrate, at first, on the
former. The Cy + Cz part of the quantity Z, definedin (4.4.135) is

1 6
A+ — - 4 -
K [”_exp{'fcd“'(iaj(x))}

: eXp{ - IEZ/ d'x / d*x’ ja(x)DEP(x — X’)J’b(X’)} (4.4.145)
ab /Ca Co

where |5 is an external source having support on C5 and the summation is taken over a,b = 1,2. In
(4.4.145), D2 represents a propagator between the fields on C, and Cp:

De(X — X)) = ng(x —x) XeCq X e€Cp, a=1,2

Theintegration over the path C, is given by

t
d* = e, / d*x (4.4.146)
Ca —t

t—o00
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wheree; equals1fora = 1and —1for a = 2. Therefore, it is convenient to introduce the notation
D2 (x — X') = €aepDP(x — X)). (4.4.147)

Then, (4.4.145) becomes
2l ) = eXp{‘ Zfa/d“xm(a/iaja)}
a
X exp{ - IE Z / d*x d*x’ ja(X) Dzb(x _ X,)jb(X')}, (4.4.148)
a,b

The Feynman rules of the C;1 4+ C; part in the ¢*-theory become
a a

& b_ iD20(k) ;><i = —ikea

where D(k) is the Fourier transform of D(x). In problem 4.4.4, page 254, we suggest explicitly
calculating the propagatorsand their periodicity properties. The 2 x 2-matrix propagator D2? is given by

500 = (m + 2780 —m?) f () —2me(ko)d (€ —mP) fy” (ko) )
“ —2ne(k)d (K2 — M) f4 (ko) b + 2m8(K2 — m?) £y (k)
oo
=Y e fPw =1+ W (4.4.149)
n=1

where wx = ~/'k? + m2. Notethat o has a small negativeimaginary part, « = Rea —ie, dueto our choice
of the path C. The propagator given in (4.4.149) has the property

D2 (x) = DP(—x) and  DP(k) = DPA(—k).

For example, the two-point Green function of fields on C; at the treelevel is obtained using (4.4.140) and
(4.4.149):

GE k) = / d—z“ 6 pe o (DL (K)) (4.4.150)
E is(E") PP
- dE’pE,E_E/[i_Jrzna(k —m? 5(E’—nwk)}.
/0 k? —m? + e n2=:1

In the thermodynamical limit, using (4.4.141) and (4.4.142), (4.4.150) is approximated as

Gl k B peE i8(E") 22 e
n=1
= i onsk®—m

2
—_. 4.4.151
KZ_m21ie U ( )

Thus, we have recovered the two-point Green function Dél(k) in the finite-temperature quantum field
theory, cf (4.4.79). We should note that the temperaturein (4.4.151), 1/8g, is given by the microcanonical
ensemble with the energy E, namely g = 0S¢ /0E.
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Let us turn to the C3 part. The propagator of the fields on the C3 path depends on the sign of «.
Using the same notation as before, we have:

d*k

0 e 25k — m?) £ (ko)

iD3(x) = e(a){e(xo) /

+6(=X )/ d% e o s(k% — m?) £ (ko)
0 2n)4 ¢

d*% i _
+9(—a){9(xo)/ (Zﬂ)4e KX §(k% — m?) fOE ) (ko)

4
+6(—Xo) / dk e 2o s(k? — m?) f;+>(k0)}. (4.4.152)
(2m)%

Because of the finiteness of the time interval on the C3 path, the propagator in (4.4.152) is not Fourier
transformed like those in (4.4.149).

<& Examples of calculationsin ¢* theory

Let us consider the full propagator as a sum of self-energies (problem 4.4.7, page 256 suggests
calculating the expectation value of the number operator for a system with fixed energy). In the one-
|oop approximation, the self-energy ng of the scalar boson is given by the diagram

@QQ-

After a straightforward calculation, taking care with the positions of the poles of the propagators, we
obtain

23 = (P2 ® —ind) = ()P,

£ _ A 2721 —d/2)
T 2 3274(m2)l-d/2
s _ d3k

¢ 2] 2m)3wk

(4.4.153)

) (1)

1 0
0 -1
It isuseful to rewrite the matrix propagator in the following form:

where 13 = and we have used the dimensional regularization, d = 4 — § (cf section 3.2.7).

.= _ [
IDE(K) = (00 DR (@) + O (ko) Py (@)

+ [0 (ko) DR (@k) +6(—ko) P o (@h)] 5

—_— 4.4,154
—-m?—ig ( )

where A and R stand for the advanced and retarded parts, respectively, and (&) for the positive and
negative ko parts. The 2 x 2-matrices ® are defined by

) ) () )
+) o T () =T (k) (=) (=T (k) e (k)
PRale) = <—f05+>(wk) (@0 ) Prale) = ( ) —fé”(wk))

-) -) -+ &
) o () fa (wx) -) o faT () —fa (k)
Paalon _< fa (wx) —fé“(wk)) Paaln) = <—fé><wk) fa (@) )
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The matrices ® have simple product relations
- (GO €] (GNP
O P =Pr3d O - P =D o5 -0 =0
o R R R (4.4.155)
o o =0 ol 0% =0

Using the propagator in (4.4.154) and the product property between d)Sf)R in (4.4.155), the sum of self-

@ -—+—O—+ OO+

is performed. Let us denote this sum, that is, the two-point Green function at finite energy taking into
account the interaction, by i A2°(k). Then we find

i i
iA,(K) = {0(Kk CD(+) CI)(+)
a(K) { (0)|:k2—m2—i2a+i8 R’a+k2—m2—i2a—ig A
| ) i )
o= @ ® . (4.4.156
o kO)[kz_mz_iZa‘f‘ig A’a+k2—m2—i2a—i8 R’a“ ( )

Here, we impose the renormalization condition that m? + £© be the physical mass.

<& The entropy, effective action and the behaviour of symmetry at high energy

It is an interesting problem to investigate the symmetry behaviour in finite-energy quantum field theory.
For this purpose, we can use the general formulation based on the entropy and the effective action adapted
to finite-energy quantum field theory. The definition of the effective action in finite-energy quantum field
theory has some peculiarities, and we refer the reader for their discussion to Chaichian and Senda (1993)
and Chaichian et al (1994). The entropy and effective action can be calculated using the perturbation
theory with respect to the coupling constants or by the stationary-phase approximation.

Since we are treating the system quantum mechanically, there is a certain width of energy, SE, such
that we cannot distinguish between the energy eigenvalues E and E + SE because of the uncertainty
principle. From the physical point of view, the uncertainty of the energy is of the order of the momentum
uncertainty, namely sE ~ L~1. In the following, we will not specify §E and we will consider it as a
constant. The appropriate definition of the effective action Sg¢, g in the finite-energy field theory reads

Sur.elp) & In{aE/ g—“e‘“EN;BaeiFa[‘“} (4.4.157)
T

where I'y [¢] is, as usual, the generating functional of the one-particle irreducible (OPI) Green functions
(depending on the parameter «),

¢2(X)E€aawa[” € = -1 a=2
dja(x) cl@ a=3
Colp] = Welj]l - /C d*X | (X) e (X). (4.4.158)

Here e (o) isa step-function: €(a) = «/|a| for a # 0 and €(0) = 0. Note that the time integration in the
definition of I, istaken over the path C because of the definition of ¢2; W is the generating functional of
connected Green functions.
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It is interesting to see the symmetry behaviour at high-energy density. For this purpose, let us
examine the case m? < 0 for ¢*-theory, where spontaneous symmetry-breaking occurs at zero energy.
Since we are considering a classical field which isindependent of the coordinate, we define the density of
the effective potential asin the finite-temperature case (cf (4.4.47)):

1
welg] = —Fseff,E[fPl
The condition that the symmetry isrestored is

d?we(¢]

d%¢2|¢:0 > O

This condition gives, in the stationary-phase approximation, for the a-integration in (4.4.157):

A (30E\Y2
ﬂ. —]'[ZL3 > |m |

Therefore, the critical energy density ec = E¢/L3, above which the symmetry isrestored, is

2
72 [24)m?|

Ec ™~ — .
€30 A

Inasimilar way as that presented for ¢*-theory, we can formulate the quantum field theory at finite
energy for gauge theories such as QCD. In this case, the formulation would be useful in describing the
dynamical evolution of a strongly interacting system, e.g., ion-ion collisions. We could also study the
behaviour of the QCD running coupling constant as a function of energy in analogy with temperature
behaviour.

446 Problems

Problem4.4.1. Calculate the effective potential for ¢*-theory in the one-loop approximation using the
stationary-phase method, cf (4.4.36).

Hint. Let us consider the general action for areal scalar field:
s= [ d'xid@9? + dm’e? + Vo)
and expand it (up to quadratic terms) about the solution ¢ of the stationary equation,
?—j +Jx)=0

for the action in the presence of the external source. The Gaussian integration yields

1/2 _
~ det(d + m?) | 4
2= |:det(D+m2+U”((Pc))j| exp{ﬁ [S[%H/d XJ*"C“'
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The approximation for the generating functional for connected Green functions provesto be

?W[JJ _ ?lnz — Sipd] +/d4xJ¢c

+ JiB[TrIn@ + m? + U" (gc)) — Trin@ + m?)] + O(h?). (4.4.159)
The mean value of thefield is defined by

hoWI[J]

$00 =7 5J(X)

and satisfies ¢ = ¢c + O(h). Since ¢ isasolution of the equation

8S
—+JX)=0
S¢

the relation (4.4.159) can be written as
?W[J] = Sp] + / d*x J¢ + %ih[TrIn(D +m?+U" () - Trin@d+m?) + OH?). (4.4.160)

The effective action I'[¢] is obtained now by a L egendre transform and reads as
T[¢] = T O[p] + TV [p] + O (4.4.161)

where
rOg) = g¢]

(cf (4.4.30)) and
r®¢] = JipTrin@ + m? + U”($)) — Trin@ + m?).

The transition to the momentum representation (i.e. the Fourier transform) and the addition of the
appropriate counter-terms (i.e. renormalization) give the required result (4.4.36).

Problem4.4.2. Give qualitative arguments supporting formula (4.4.120) for the correlation length £(T),
with the help of the linearized form of the M -transformation (4.4.109) and the definition (4.4.89), (4.4.90).

Hint. Since at the critical temperature T the set ug is the stationary point of the M -transformation, we
may assume that in the vicinity of the critical temperature, the difference u™ — ug for large values of n
is proportional to the difference T — Tc. On the other hand, if the system is outside the phase transition
curve, the iterated application of the M-transformation does not result in ug. The closer the system
becomes to the phase transition curve, the more iterations are required to remove it from the vicinity of
Ug. To estimate the number of such iterations, let us linearize the M-transformation asin (4.4.119). Then
the difference u™™ _ ug is of the order

u™m _ g ~ AT - To) (4.4.162)

where A1 isthe maximal eigenvalue of the linearized transformation (4.4.119). If the difference (4.4.162)
islarge enough, e.g., if it is of the order of the critical temperature (which is a characteristic quantity for
a system near a phase transition), we can say that the system is not in the vicinity of the phase transition.
Thus, supposing Te ~ AT — Tc), we have the following estimation for the necessary number m of
M-transformations:

m~ IN(Te/(T — To))

4.4.163
Iniq ( )
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The correlation function of the new system (i.e. after the I\W—transformations) has the exponential

asymptotics: G(r)r—> exp{—r/&op} (because it is outside the vicinity of the phase transition). But this
—00

new system is nothing but the initial one after the scale increasing by 2™ times. Therefore the correlator
of theinitia system has the asymptotics

r
exp { — Zm—so } . (4.4.164)

From (4.4.163) and (4.4.164), we find an expression for the correlation length, £(T) ~ 2™, which is
equivalent to (4.4.120).

Problem4.4.3. Show that the calculation of the trace of the density operator for fermionic systems
amountsto path integration with antiperiodic conditions (4.4.13).

Hint. Use the explicit derivation of the path integrals for fermionic systemsin problem 2.6.10, page 316,
volumel (its generalization to field systemsis quite straightforward) and derive the trace of an operator.

Problem4.4.4. Show explicitly that the propagator of a scalar field at finite energy obeys the periodic
boundary conditions (4.4.143).

Hint. Assuming that the volume of the system is sufficiently large, the Fourier components of the free
field and their commutation relations are given by

(akei(kx—wkxo) + a;(re—i(kx—wkxo))

d3k
)= / V(27)320x

lax, a1 = 8%k — k) others=0. (4.4.165)
The two-point Green function in a medium of finite energy E in the time-path formalism is defined as
do icE
Ge(x—y) = >n € PE.a(Tc(@(X)(Y))a

where (-),, on the right-hand side means
(AB), = Tr(e"®H AB)/ Tr(e1@H)

and pg , isdefined in (4.4.137). Because of the contour ordering, we introduce the contour step-function
0:(Xo — Yo), whichisoneif g is closer to the end of the contour than yp, % when xg = Yo and otherwise
0. Then,

(Telp(X)p(YN)a = (X0 — Yo) (9 ()@ (Y))a + bc(—Xo + Yo) (9 (V)9 (X))a-

Using the standard procedure, we obtain
d*
00w = [ SS5e ek - )L+ 17 ko)

d*%k
(P(Ne(X))a = / Weﬂk“*y)e(ko)a(kz_mz) fi™ (ko)

wherewe are using the metric (+, —, —, —) and € (k) equalsk/|k| for k # 0and 0 for k = 0. The quantity
™) isdefined in (4.4.149). Let us define D> and D< by

iD> (k) = 2me(ko)d (k2 — m?) £ 1 (ko)
(4.4.166)



Field theory at non-zero temperature 255

and their Fourier transformation by D, (X) = [ ) 4e ik(x=¥) D, (k). Since the two-point Green function
and the propagator are related by

do
GEX—Yy) = / >-€ e B pe 4iDy(x — y)
JT
the propagator is obtained as
Do (X —Y) = 6c(Xo — Yo) Dy (X = Y) + Oc(—X0 + Yo) Dy (X — ). (4.4.167)

For the propagators of the fields on the path C; + Cp, the result in (4.4.149) is found by Fourier-
transforming this expression and using the definition of D in (4.4.147). The propagator of the fields
on C3 in (4.4.152) is obtained directly from (4.4.167).

In order to check the periodicity (4.4.143), let us discuss keeping t finite in the definition of the path
C. For x; = (—t, x1) € C1 and Vx2 € C, wefind that

Dy (X1 — X2) = D; (=t — X2,0, X1 — X2) (4.4.168)

where we have used thefact that x; is placed at the starting point of the path C. For x; = (¢ —t, X1) € Cs,
at the endpoint of the path C, and Vx, € C, the propagator becomes

Dy (X1 — X2) = D; (=t +a — X2,0, X1 — X2). (4.4.169)

Using the expressions of D~ and D= from (4.4.166) and the property fof’)(—u) = — fé“(u) foru > 0,
we find that
D, (=t +a — X2,0, X1 — X2) = D7 (—t — X2,0, X1 — X2).

Therefore, the right-hand side of (4.4.168) is equal to the right-hand side of (4.4.169). Thus we have
found the desired periodicity.
Problem 4.4.5. Show the decoupling of the Cg part from C1 + Co.

Hint. The decoupling of the C3 part from C; + C; is equivalent to the vanishing of the propagator
connecting Ca, a = 1, 2 and Cg. After integrating out the field, the part connecting the sources on Cy
and Cz isgiven by

| f dix / 4%’ ja(x) Da (X — X') ja(X')
Ca C3
g kot [ g4x / dt//d3 e kXD i VD= (K) ja(—=t +t'. X') (4.4.170
(Zﬂ)4 /c ja00D; (K) ja( ) (44.170)

where we have changed the integration variable over time on C3. Since j3 is chosen to be a smooth
function of X’ € (Ca, r3), (4.4.170) has a form in which we can use the Riemann—L ebesgue theorem
with respect to the ko integration. Thus, implemented with a standard adiabatic switching on and off
mechanism for the external source, the right-hand side of (4.4.170) vanishesin thelimitt — oo.

Problem 4.4.6. Show the equivalence of the different choices of time paths: the one depicted in figure 4.4
and the path presented in figure 4.5
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Imt

Figure4.5. The adternative time path C’ for the formulation of finite-energy quantum field theory.

Hint. The merit of the path C in figure 4.4 is that the real-time part C; 4+ C; and the equilibrium part C3
decouple, making the theory simple. However, there is always the possibility of choosing the other path,
in particular, the path C’" = C] + C;, depicted in figure 4.5. The general reason for the independence of
the results of the choice of pathsisthe very construction of the path integral based on the compl eteness of
the states at each time. To verify this statement by practical calculation, we can find the one-loop effective
action using C’. For further hints, see Chaichian and Senda (1993). Here, we note only that similarly to
the discussion in the preceding problem, the paths C and C/, decouple.

Problem4.4.7. Calculate the expectation value of the number operator at tree level for a system with a
microcanonical density operator (i.e. with fixed finite energy).

Hint. The number operator of the state with momentum Kk is ﬁf(l) = al((l)Taf(l), where a,”’ is a Fourier

component of thefield on C1 (see problem 4.4.4). The expectation value of ﬁf(l) inamedium of energy E
is

(€8]
k

d3x d3y
NI
e =M | o320

L3 E S
ZW/O dE/)OE,E—E’X:(S(E/—na)k)
n=1

e KOV By 4 Tk) By, — k) (T (@10)P1(Y)))E I xg=t e, yo=t

where @1 represents afield on the path C;. To obtain the last line, we have used the explicit form of the
two-point Green function (T (p1(X)¢1(Y)))e = G, where G is given in (4.4.150). The total number
operator is given by
A d3k A (1)
N= [ ———n".
(27)32wi
Thus, its expectation value becomes

R L3 E . _ ,
(N)e = —(Zﬂ)3/0 dE’ pe.e_g N(E")
qoen L k=
N(E) = (Zﬂ)gf )20 ng:lcS(E — Nw) (4.4.171)

where N(E’) means the number of particlesin the subsystem of energy E’.
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4.5 Superfluidity, superconductivity, non-equilibrium quantum statistics and the
path-integral technique

At the beginning of the last century, it was shown on statistical grounds only (Bose 1924, Einstein 1925,
Fermi 1926) that, under extreme conditions, ideal gases of indistinguishable particles have remarkable
features on a macroscopic scale. Furthermore, in the case of an interacting gas even more stunning
phenomenamay occur. A well-known example in this context is superconductivity. In a superconducting
metal, an attractive interaction between two electrons with opposite momenta causes an instability in
the Fermi surface together with the formation of Cooper pairs (Cooper 1956) (see aso, e.g., de Gennes
(1989) and references therein). The latter are allowed to move freely through the lattice, resulting in a
superconducting current and a vanishing resistance. According to the successful BCS theory (Bardeen et
al 1957) describing this, the attractive interaction is the result of a phonon exchange process, and BCS
theory shows that superconductivity can, in a certain sense, be regarded as a result of a Bose-Einstein
condensation of the Cooper pairs. Another striking example of this condensation process is associated
with the superfluid phase of liquid “He (see, e.g., Griffin (1993) and Griffin et al (1995)).

Phenomenologically, the characteristics of superfluidity can be explained if the dispersion relation of
the elementary excitationsdiffersfrom the particle-like dispersion e (k) = h%k?/2mand islinear for small
momenta. To see that this feature indeed implies superfluidity, let us consider liquid “He in a very long
cylindrical pipe moving with velocity v along its symmetry axis. Describing the strongly interacting Bose
liquid in the pipe asan assembly of non-interacting quasi particlesin astate of thermal equilibrium, wefind
by the usual methods of statistical mechanics that, in the laboratory frame, the number of quasiparticles
with momentum /K and energy hw (K) is given by

1
elho()—hkv)/keT _ 1

N(k) = (45.1)
Thevelocity v isstill arbitrary at this point, but its magnitude has an upper bound because the occupation
numbers N (k) must be positive. Therefore, werequirefor all k # Othat iw (k) > kK - v. Inthiscase, the
total momentum P = )", hkN(Kk) carried along the walls of the pipe, is, at low temperatures T, clearly
much smaller than the momentum Nmuv that we obtain when the whole liquid containing N atoms moves
rigidly with the walls. Hence, if the dispersion relation is linear, i.e. hw(k) = hc|k|, we conclude by a
Galilean transformation that the fluid can have a stationary (frictionless) flow if the speed is small enough
and obeysv < c. Herewith, both the existence of superfluidity aswell asacritical speed above which the
phenomenon cannot take place is explained (of course, only at a heuristic level). The linear dispersion at
long wavelengthsin a Bose system with short-range interactionsis well established by now. However, to
calculate its speed ¢ from first principlesis not feasible in general and in particular not for the strongly
interacting “He liquid. To achieve that, we have to consider a dilute Bose gas, for which we can rely on
the weakness of the interactions or, more precisely, on the smallness of the gas parameter (na®)1/2, where
n isthe density and a is the radius of interaction of the particlesin the gas.

An approach to describing Bose-Einstein condensation (and hence to the phenomenaof superfluidity
and superconductivity) depends on what we are going to find out about this phenomenon. If we are
interested in cal culating the magnitude of the Bose—Einstein condensate, the spectrum of (quasi)particles,
spatial correlators and other static characteristics, we can use the methods of the equilibrium quantum
statistics based on apath integral with imaginary time (see section 4.4.1). Starting from the non-relativistic
secondary quantized action (4.4.1) together with an interaction of the form (4.4.5) and using the standard
path-integral technique, we can develop an appropriate approximation method for calculating the static
physical characteristics of the condensation. As usual in phase transitions, a finite-order perturbation
theory approximation is not suitable for this aim, and we have to sum some infinite series of Feynman
diagrams. An advantage of the path-integral formalism is that it allows us to develop an improved
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perturbation expansion in the domain of small momenta of the particles (see section 3.3.1), which is
especially important in the case of the condensation. We shall present some essential points of this
approach in sections 4.5.1 and 4.5.2.

If we are interested in describing the formation process of the Bose-Einstein condensate, we have
to use the methods of non-equilibrium quantum statistics. The time-dependent phenomena and the
characteristics of a quantum system which is in contact with a thermal reservoir and which undergoes
Bose-Einstein condensation are discussed in section 4.5.3.

451 Perturbation theory for superfluid Bose systems

The perturbation theory for statistical systems (non-relativistic field theory at imaginary time) has been
developed in section 4.4.1. Thistheory is applicable at high temperature (above the critical temperature
of the phase transition to the superfluid state) and it below the phase transition should be modified. As
discussed in section 4.4.4, the characteristic property of the phase transition is the existence of long-range
correlations, so that the correlator (¢(t, X)¢(t, Y))p decreasesasr = |Xx — y| — oo as apower and not
as an exponential. In athree-dimensional space this correlator asr — oo tendsto a constant pg which is
just the condensate density.

<& Simplest perturbation theory taking into account a condensate

In order to develop a perturbation theory for the action (4.4.1), (4.4.5) taking into account a possible
non-zero condensate, we make afield variable shift:

(T, X) = ¢'(1,X) +« 0*(1,X) = (@), X) + (4.5.2)

where |a| = po. After the transition to the Fourier transform (4.4.7) for the fields ¢ (z, X) — a(w, k) =
a(k), the shift (4.5.2) reads as

ak) — b(k) + ay/BL38o  a*(k) — b*(k) + o/ BL38ko (4.5.3)

and the action takes the form

k2 o
S= Zk: {(% —lo— u) b*(K)b(K) + [er[*(@(0) + T(K))b* (K)b(k)

Uk
n %)(azb*(k)b*(—k) + (a*)zb(k)b(—k))

1
> [litke) + T(ka) (eb® (kp)b* (ka)b(ka) + o *b(ka)b(ka)b* (k3))

2V '3L3 k1+k2=k3

1
+ 123 Z [U(ky — k3) + U(ky — ka)]b*(k1)b* (k2)b(k3)b(ka)
p ki +ko=ks+ky4

+/BL3[Y*b(0) + yb*(0)] — BL3[p]ar|? — %ﬁ(onmz]}. (4.5.4)

+

Herey = U(0)|a|? — au. All the termsin this action except the first one (which correspondsto an ideal
gas) are considered as perturbations. In addition to the elements mentioned in section 4.4.1, the diagram
techniquefor the perturbation theory in the case of a possible condensate containsthe following elements:
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k=0
— Y
kq
k=0 : ks
—— y* a[U(ky) + U(ko)]
k k ko
——e——  |o|2(T(0) + T(k))
kq
k —k k3 ~ ~
——e—— (k) >‘ a*[U(ky) + U(k2)].
k —k ko

——e—  (a")Z(k)

The constant « is chosen so that the sum of all diagrams with one external line are cancelled out;
graphically this condition looks as follows:

‘E¥+ b =0

Thisreguirement is equivalent to the condition

(b(0))s = (B'(0)p =0

@0)s =ay/pL3  @'(0)p = a*/pL3

@ka' (k) = (bkb'k))s + L3a|%5k0. (4.5.5)

Thelast relation shows that |«|2 has the meaning of a condensate density.

or

and

<> Normal and anomalous Green functions and the spectrum of particles

Later in this section we shall put, for simplicity, 2m = 1 (together with kg = # = 1).
In a superfluid system, along with the usual (‘normal’) Green function

G(k) = (b(k)b' (k)4 (4.5.6)
two anomal ous functions appear:
G@ (k) = —(bkb(—k))g  G@ (k) = (b (k)b (—k))s. (45.7)

These Green functions can be expressed by normal and anomalous self-energy parts X1 and X, (which
are sums of the OPI diagrams), according to the following Dyson-Schwinger equations (cf section 3.1.5):

G(k) = Go(K) + Go(K) Z1(K)G(K) + Go(K) Z2(K)G@ (—k)

(4.5.8)
G@ (k) = Go(—K) ZF (K)G(K) + Go(—k) Z1(—k)G@ (—k).
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In adilute gaswith asmall parameter
n3a « 1 (4.5.9)

(this means that the radius of particle interactions a is much smaller than the mean distance between the
particles; thelatter is obviously related to the density of particlesn) we can develop (see Popov (1983)) an
appropriate approximation for the calculation of the self-energy parts X1, > and solve equations (4.5.7)
with the result

i+ k%4 A
GK)= — 2 T2
® w? + k4 4+ 2AK?2 (4.5.10)
A
G@K)y = —
) w? 4+ k% 4+ 2Ak2
where 2
def

A = topo = p — ————2(3/2)teT3/? (4.5.11)

(4ﬂ)3/2
(¢(x) is the Riemann ¢ (x)-function) and the constant tg is the characteristic of the interaction between
particles (namely, their scattering amplitude in the limit of zero momenta, ki — 0,i = 1-4). Recall that
po IS the condensate density. This solution is valid only for A > O, that is, for temperatures T below
the critical value T defined by the condition A = 0. If A < O (that is, for a high temperature T, only a
non-anomal ous Green function exists:

Gy =

_ 45.12
iw—kZ24+ A ( )

After theanalytical continuationiew — E, we can extract the spectrum of the system (defined by the poles
of the Green functions), above and below the critical temperature:

E = vk*+2Ak? A >0  (superfluid phase) (4.5.13)
E=k?’+|A|] A<O (norma phase). (4.5.14)

It is seen that in the first case for |K| <« +/A, the spectrum of particles becomes linear. As we have
explained in the introduction to this section, such a spectrum implies superfluidity.

<& Comment on the improved perturbation expansion for superfluid systems by separate path
integration over higher and lower modes

The calculation of higher ordersof the perturbation theory considered earlier showsthat it becomesslowly
convergent in the vicinity of both the critical temperature (i.e. A ~ 0) and small momenta of the particles
(k ~ 0). Thissituation can be improved (Popov 1983) by separate consecutive path integrations over the
higher and lower modes of the fields, asin section 3.3.1. The corresponding calculation in this approach
goes through the following steps:

(i) The fields ¢(t, k), ¢*(z, k) are separated into lower-mode ¢o(z, K), ¢g(r, k) and higher-mode
@1(7, K), 93 (t, K) parts: go, ¢ correspond to Fourier modes with momenta || < « in the expansion
(4.4.7), while @1, ] have Fourier modes with |k| > «. Here « is some small parameter which is
adjusted for an optimal convergence of the perturbation expansion.

(i) Using the standard perturbation theory as before, we calcul ate the effective action S0 [¢g, @p] for
the lower mode fields ¢o, ¢g:

exp{—S®[go, 51} = f Dy} D1 exp{—S)}.
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The only specific feature of this calculation is that all sums over momenta are cut off at the lower
limit «. Thus, this perturbation expansion has no divergencesat small values of momenta.

(iii) The effective action S0 (¢, @] can be expanded into power seriesin thefield variables and for the
small parameter «, the expansion can be restricted up to quadratic terms. Thus, the remaining path
integration over the lower mode fields go, ¢ becomes Gaussian and can be carried out exactly.

Theimproved perturbation expansion allows us to obtain more detailed information about superfluid
systems. In particular, we can find (Popov 1983) the 1,/k2-asymptotics of the Green function

1

G(O, k) ch]) constant p

Among other things, this asymptotic shows that it is impossible for the condensate to form in one- and
two-dimensional spaces since the singularity 1/k? is non-integrablein the low-dimensional spaces.

45.2 Perturbation theory for superconducting Fermi systems

The phenomenon of superconductivity in Fermi systemsis quite close to the superfluidity of Bose systems.
In the path-integral formalism, the analog of the Bose field ¢ turns out to be the product of two Fermi
fields, ¢, and the analog of the one-particle correlator (p(z’, X")¢(z, X)) turnsout to be the two-particle
correlator (mean value of four Fermi fields):

(W (t1, XDV (12, X2) ¥ (13, X3) ¥ (T4, Xa)). (4.5.15)

A system of Fermi particles has long-distance correlationsif, at fixed differences x; — X2 and X3 — X4, the
correlator (4.5.15) decreasesin the limit x; — X3 slower than an exponential or even has afinite non-zero
limiting value. In the latter case, we can expect anomalous Green functionsto exist:

(W, XY (12, X2))  and (¥ (13, X3) ¥ (a4, Xa)). (4.5.16)

In ordinary perturbation theory, such mean values vanish. In order to modify the perturbation expansion
taking possible anomal ous non-zero mean values into account, let us add to the action the terms with the
external sources n(p), n(p) of theform

S ~ Y "Gi(pa(pa(-p) + n(p)a*(p)a*(—p)) (4.5.17)
p

where a(p), a*(p) are the amplitudesin the Fourier transform of the fields v, ¥. The peculiarity of this
action functional is that now the number of particlesis not a conserved quantity and for non-zero n(p),
7(p), theanomalous mean values (4.5.16) do not vanish. In order to find out whether the system undergoes
a phase transition into the superconducting state, we have to study the limit n(p) — 0, n(p) — O: if
the anomalous mean values (4.5.16) have a non-zero limit, the system is in the superconducting state,
otherwise the system is in the normal state. Such a study can be carried out using the perturbation theory
and the Dyson—Schwinger equations (cf section 3.1.5).

<> Superconductivity and perturbation theory for Fermi systems

To introduce the diagram technique we must take into account the spin degrees of freedom for the Fermi
particles and describe them by the fields ys(z, X), s being the spin projection onto some space direction.
Let usrestrict ourselvesto the following non-zero anomal ous mean val ues.

s © (Us(t1, X1)¥—s(T2, X2))p
S = (Ys(t3, X3)Y—_s(Ta, Xa))

(4.5.18)

g
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while (¥s¥s)p and (Yss)p vanish. Then, the path-integral technique (see section 3.1.5) allows us to

derive the following Dyson—Schwinger equations for the normal S(p) o (Ws(t1, X1)Vs(T2, X2))p and
the anomal ous Green functions:

S(p) = S(P) + DP)Z1(P)S(P) + SH(P) T2(p)S@ (p)
S (p) = —SH(P)Z2(P)S(P) + So(—P) T1(— P S (p).

Here X1 and X, are the self-energy parts, i.e. the sums of one-particle irreducible (cf section 3.1.5)
diagrams

(4.5.19)

<_®+ =

In these diagrams, the line —— denotes the normal Green function S(p), while —«—— denotes the
anomalous Green function S@V(p).
Since the free Green function S(p) is given by (see section 4.4.1)

&L
Lo

X0

(@, k) = R (4.5.20)
(cf (4.4.1) and (4.4.2)), the solution of (4.5.19) can be written as
S = (iw+k2—p+ Eli((l)—_;)k)z(i; I—L :Zz—ll_f)ﬁl(p)) — [ Z2(p)?
(4.5.21)
S(p) = iw+ K% — 1+ S1(—p)

(iw+ K2 =+ S1(—p)(iw — K2 — u — 21(p)) — [Z2(p) 2

In order to obtain an explicit expression for the anomalous Green function, as in the Bose gas, the
expansion for the self-energy parts has to be cut off in a self-consistent way. This can be done, in
particular, in the case of the small gas parameter n'/3a <« 1. Then we can show (Popov 1983) that
the main contribution to the self-energy partsis given by the diagrams:

-l g0

Thefour-point Green function entering thediagram for X1 isgiven by thefollowing sequenceof diagrams:

o KO KOO
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(which can be summed by the so-called T-matrix method).

As aresult of the calculation of the anomalous Green functions, we can find physically important
characteristics of superconducting systems, in particular, the energy gap A (0) in the spectrum of asystem
in a superconducting state (we recover the particle mass m explicitly):

4 2 2
A0) = “Pe expi— 2 -2
m mlto| Pr

where pr = +/2mu is the Fermi momentum (radius of the Fermi sphere) and to is the value of the T-
matrix in the domain p < pg, where it can be approximated by the constant to = T(p1 = p2 = p3 =
pa = 0) (cf (4.5.11) in aBose gas). The critical temperature of the transition to the superconducting state
is expressed in terms of the energy gap as follows

_ exple)
4

Tc= A(0) (4.5.22)

(€ =0.5772. .. isthe Euler constant).

453 Non-equilibrium quantum statistics and the process of condensation of an ideal Bose gas

Our main goal in this section is to introduce the reader to the problems of formation and evolution of
the Bose-Einstein condensation and their description in terms of path integrals. We shall start from the
relatively smple case of an ideal Bose gas. at first, from an isolated one and then coupled to a thermal
reservoir. In fact, considering the model for an ideal gas provides quite a comprehensive presentation
of the path-integral techniques in the theory of superfluidity. The introduction of an interaction, which
physically is extremely important, does not require essentially new path-integral methods. Therefore, we
shall not discussthe Bose—Einstein condensation of arealistic interacting gasin full detail (for acomplete
consideration of this complicated topic, we refer the reader, e.g., to Griffin (1993), Griffin et al (1995),
Stoof (1999) and referencestherein).

< ldeal gas of bosonic quantum point particles

In the textbooks, an ideal Bose gas of quantum particles is generally discussed in terms of the average
occupation numbers of the one-particle states y,, (X). Given the canonical density matrix oc(tp) of the gas
at an initial time tp, these occupation numbers obey

Ny (t) = Trlpc(to) @) (1) @e ()] (4.5.23)

with (;3; (t) and @, (t) the usua creation and annihilation operators of second quantization in the
Heisenberg picture, respectively. Because the Hamiltonian of the gas

H=3 cadl®al® (45.24)

commutes with the number operators Ny (t) = (ﬁ; ()@ (1), the non-equilibrium dynamics of the system
istrivia and the average occupation numbersare, at all times, equal to their value at the initial time tp. If
we are also interested in fluctuations, it is convenient to introduce the eigenstates of the number operators,
i.e.

’\Tt Ny
[{Ng}; t) = 1_[ %m) (4.5.25)
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and to consider the full probability distribution

P({Na}; t) = Tr[p(to) [{Ne}; t) ({Na}; t|] (4.5.26)
which is again independent of time for an ideal Bose gas. The average occupation numbers are then

determined by
Ne() = > N P({Ne}: 1) (4.5.27)
{No }
and the characteristics of the fluctuations (dispersions of observables) can be obtained from similar
expressions.
It is even more convenient to consider the eigenstates of the field operator

P0G =D fa () xa (X) (4.5.28)

that is, coherent states for the creation and annihilation operators ¢, (t), (t) with the equal-time
commutation relation [¢ (1), @ (t)] = 1. Aswe know from section 2.3.3, an agenstate of ¢(x,t) with
theeigenvalueg(x) =), ¢aXa(x) isgiven by

|¢;t>=exp{ / dx ¢ ()T (x, t)} exp{Z% (t)}|o (45.29)

and is also clearly an eigenstate of ¢, (t), with the eigenvalue ¢,. A straightforward generalization of the
coherent state properties discussed in chapter 2 to the case of an infinite number of creation—annihilation
operators shows that these eigenstates obey the inner product

(#:tlps t) = exp{/ dx ¢*(X)¢’(X)} = exp{ Zqﬁéqﬁ&} (4.5.30)
and the compl eteness relation
/]‘[ 990 A6 |9 D@1 _ 4 (45.31)
21 (¢ t]g:t)

Thus, in analogy with the occupation number representation in (4.5.26), we can now develop another
description of the Bose gas, by making use of these coherent states and considering the probability

distribution

1¢; 1) (9; 1] }

(p:tle: 1)
Although we expect this probability distribution to be once again independent of time, let us nevertheless
proceed to deriving its equation of motionin away that can be generalized when we consider an interacting
Bose gas. First, we need to expand the density matrix p(tp) in terms of these coherent states. For an

isolated Bose gas, it is appropriate to take an initial density matrix that commutes with the total number
operator N = )", N, (t) and then we find the expression

Plg*, ¢;t] =Tr [ﬁc(to) (4.5.32)

pllgol tol=——— (4.5.33)

R _ d(¢§)« d(P0)a 5 . - |¢o; to) {¢o; tol
pollo) = /H 2mi (¢0; tolgo; to)

in which the expansion coefficients p[|¢o|2; to] only depend on the amplitude of thefield ¢o(x), but not on
its phase. Thisis equivalent to saying that theinitial state of the gas does not have a spontaneously broken
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U (1) symmetry. Since we are ultimately interested in the dynamics of the Bose-Einstein condensation
whichimpliesU (1)-symmetry-breaking, it iscrucial not to consider aninitial stateinwhich thissymmetry

is aready broken.
Next, we substitute this expansion into equation (4.5.32) to obtain
d@p)ed@a |(¢; tigo; to)|®
90 /H 2ri P ol 16,0 (60 toldor ) (4539

This is a particularly useful result, because the time dependence is now completely determined by the
matrix element (¢; t|¢po; to), for which we can immediately write the path-integral representation.

<& Schwinger—K eldysh closed time-path formalism

The next step is again, as in the foregoing sections, based on modification of the integration over the
time variable. Recall that (¢, t|¢, to) is given by the path integral in the holomorphic representation
(see section 3.1.1) over al complex fields p(X, t1) = Y, ¢a (t4+) xo (X), With the asymmetrical boundary
conditions (3.1.82):

(: tlo: to) = f
Clo* (X,1)=¢*(X);0(X,to)=¢o(X)}

with the ‘forward’ action S; [¢*, ¢] given by (cf (4.4.1) and (3.1.83))

Dy* Dy exp{,'—i&[go*, ¢]} (4.5.35)

t 3
Sile* 0l =) { — g (D) ga () +K dty <ﬂf§(t+)<ihm - 6a)¢a (t+)}. (4.5.36)
0

o

In the same manner, the matrix element (¢; t|¢po; to)* = (do; tol¢; t) can be written asa path integral over
al field configurations ¢ (x, t-) = Y, ¢« (t-) x« (X) evolving ‘backward’ in timefromt to to, i.e.

(: tigo: to)* = De* Do exp{%&[cp*, ¢]} (45.37)

/é'{w(xJ)=¢(X):<p*(x,to)=¢(’§ )}
with the ‘ backward’ action

. to 9
S l¢* ¢l = Z{—Ihwé(tom(tow t dtqo;(t)(lhf—ea)wa(w}

p —

t
= Z { — ihgk (Ve (t) + ’ dt_ (pa(t)( — ih% — ea>¢;(t)}. (4.5.38)
o« t

Putting all these results together, we see that the probability distribution P[¢™*, ¢; t] can in fact be
represented by a path integral over al fields ¢(x, t) that evolve backwards fromt to tp and then forward
in time from tg to t. Absorbing, for brevity, the factor p[|¢o|%; to] into the normalization factor of the
functional integral, we thus arrive at the desired result:

[
Plgp*, ¢; t] =" Dy* Dy exp { 7 Sl so]} (4.5.39)
CHp (D=9 (0:9*(X.H)=¢" ()}

where the total (backward—forward) action obeys
Slp*, 9] = S_[¢*, 9] + Stle*, 9] = —ih Y _(PED@a(t) — I¢al®)
o

/ 1 % 4/\ 1 d / Ni d * 4/ * ot/ /
+%:/Ct dt {5 <<pa(t Jih0u () = ga(O)iho 50 (t )> — €aP ()ga(t )} (4.5.40)
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Figure 4.6. The closed time Schwinger—Keldysh contour defining the path integral for the probability distribution.

and the integration along the closed Schwinger—Keldysh contour C! is defined by Jordt’ = tto dt_ +
ftg dt; as depicted in figure 4.6 (this is the so-called closed time-path Schwinger—Keldysh formalism
(Schwinger 1961, Keldysh 1965)).

<& The Fokker—Planck equation for the probability distribution of an ideal gas

We are now in a position to derive the equation of motion, i.e. the Fokker—Planck equation, for
the probability distribution P[¢*, ¢;t]. This is most easily achieved by performing the variable
transformation

(X, ty) = p(x, t') £ &(x, 1) /2

in (4.5.39), where t’ is the projection of the ty, t_ times, as shown in figure 4.6. In this manner, the
fields ¢ (x, t-) and ¢ (X, t;) which exist on the backward and forward branch of the Schwinger—Keldysh
contour, respectively, are ‘projected’ onto the real-time axis. Moreover, at the same time, we perform
a separation between the (semi)classical dynamics described by ¢ (x,t") and the quantum fluctuations
determined by £(x, t’). After the transformation, we have

Plo*, ¢; t] = / D¢* Do / DE* D exp{,'tlsw*,«b;s*,s]} (4.5.41)
Clop(X,1)=¢(X);¢*(X,t)=¢*(X)}
with
* * t / * o4/ H 8 / * o4/ H 3 /
Sip*, ¢; £, &] = Z/to dt {qﬁa(t ) (mW —ea)sa(t )+ X (1) (lhW —ea> balt )}. (4.5.42)

Since this action islinear in &, (t") and £} (t"), the integration over the quantum fluctuations leads only to
aconstraint and we find that

Pl¢* ;1] = M1 f D¢* Do
Clo(X,1)=¢ (X);9*(X,1)=¢*(X)}

.0 €0\ Lx 0 L0 _ € ,
x ]:[a [(”ﬁ - E) i) (| T ) ba(t )} (4.5.43)
or equivalently that (problem 4.5.2, page 278)

d(¢5)ad($0)a
Plg*, ¢; t] = / (1"[ %) Pligols tol [ [ 816 — 6 ©1%) (4.5.44)

o

where we have used the fact that P[¢*, ¢: to] isonly afunction of the amplitude |¢|2 and also introduced
the quantity ¢g' (t) obeying the semiclassical equation of motion

60 = el (45.45)
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and theiinitial condition ¢¢ (to) = ¢o.a-

The latter equation is thus solved by ¢Z(t) = ¢o e «~/" and we conclude from a smple
change of variables in (4.5.44) that for an ideal Bose gas, P[¢*, ¢; t] = P[|¢|?; to], as expected (there
is no U (1)-symmetry-breaking). We also see from (4.5.44) that the desired equation of motion for
Plo*, ¢; t] reads as

o . L
h= PIo7, ¢ 1] = (Z 3o fa%)P[fﬁ Lot + (Z a¢*ea¢a)P[¢ L p: 1. (4.5.46)

This is the Fokker—Planck equation for an ideal Bose gas. We expect this result to be related to the fact
that in the operator formalism the occupation numbers N, (t) are independent of time.

It is not difficult to show that any functional that only depends on the amplitudes |¢, |2 is a solution
of the stationary solutions of the Fokker—Planck equation. As it stands, the Fokker—Planck equation,
therefore, does not lead to aunique equilibrium distribution. Thisis not surprising because for an isolated,
ideal Bose gas there is no mechanism for redistributing the particles over the various energy levels and
thus for relaxation towards equilibrium. However, the situation changes when we allow the bosons in
the trap to tunnel back and forth to areservoir at atemperature T. The corrections to the Fokker—Planck
equation that are required to describe the physicsin this case are considered next. However, to determine
these corrections in the most convenient way, we have to generalize the theory dlightly because with the
probability distribution P[¢™*, ¢; t] we are only able to study spatial, but not temporal correlationsin the
Bose gas.

To study these aswell, we construct, as usual, agenerating functional Z[J, J*] for the time-ordered
correlation functions. To thisaim, we introduce the probability distribution P;j[¢*, ¢; t] for aBosegasin
the presence of the external currents J(x, t) and J*(x, t), by adding to the Hamiltonian the terms

—h/dX (@(X, 1) J*(x, 1) + I(X, t)(ﬁT(X, 1) = —hZ(@a(t)J;(t) + Ja(t)@(t))
o
and integrate this expression over ¢ (x) to obtain the desired generating functional:

d da . . o
2513, 3] /1‘[ el prigr. gt = [ Dy Dwap{,lisw,ga]}

x exp{i/ dt/dx(go(x,t)J*(x,t)—i—J(x,t)cp*(x,t))}. (4.5.47)
COO

Note that Z4[J, J*] is indeed independent of the time t because of the fact that P;[¢*, ¢; t] isa
probability distribution (cf (4.5.31) and (4.5.32)) and thus properly normalized. We are therefore allowed
to deform the contour C! to any closed contour that runs through tg. Since we are, in principle, interested
inal timest > tg, the most convenient choice is the contour that runs backward from infinity to to and
then forward from tg to infinity. This contour is denoted by C*° and also called the Schwinger—Keldysh
contour in the following, because in practice thereis never any confusion with the more restricted contour
C! that is required when we consider a probability distribution. Now all time-ordered correl ation functions
can be obtained by functional differentiation with respect to the currents J(x, t) and J*(x, t). We have,
for instance, that

1 6
Trlpc(to)@(x, )] = T3°0 Zg[J, J*] (4.5.48)
J,J*=0
and similarly that
Tr[pc(to) T, AxtATx/t’)—l & Zg[J, J* (4.5.49)
[oc(to) Teee (@ (X, D)@' (X, )]_i_Z(SJ*(x,t)aJ(x’,t') glJ; ]J)J*:0 5.
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Notethat thetimest and t’ always have to be larger than or equal to to for these identities to be valid.

< Bosonic quantum particles coupled to a reservoir

As a reservoir, we take an ideal gas of N bosons in a box with volume L3. The states in this box are
labeled by the momentum zk and equal to xi (x) = exp{ik - x} /L%/2. They are created and annihilated
by second-quantized fields ¥, Wy and have an energy (k) = h2k?/2m + AV, where AV accounts
for a possible bias between the potential energies of a particlein the centre of the trap and aparticlein the
reservoir. The reservoir is also taken to be sufficiently large that it can be treated in the thermodynamic
limit and is in equilibrium, with the temperature T and the chemical potential w, for thetimest < tg. At
to it is brought into contact with the Bose gas under consideration by means of the tunnel Hamiltonian

~ 1 A B
HIM = 55 3 D (0@ 0T + 0 B30 1) (45.50)
o K

with complex tunneling matrix elementst, (k) that, for simplicity, are assumed to be almost constant for
momenta ik smaller than some fixed momentum #ke, but to vanish rapidly for momenta larger than this
cutoff.

To study the evolution of the combined system for timest > tg, we thus have to deal with the action

1
Slp™, @3 5 W] = — 135 ) ; fc At (t (pe O WM + () WD ()

" .0
+ }a /;Oc dt g, (t) <|h§ — € + M) ¥ (1)
% .0
+ Ek '/Coo dt W (t) <Iha —ek)+ /L) Wi (1) (4.5.51)

if we measure all energies relative to the chemical potential. Let us also introduce the complex field
W(X, 1) = >, W(t) xk(x) for the degrees of freedom of the reservoir. However, we are only interested
in the evolution of the Bose gasin the trap and therefore only in the time-ordered correlation functions of
this part of the system. The corresponding generating functional

Z5[d,3" = /Dgo*D(p/D\IJ*D\IJ exp{i—hS[go*,go; \L’*,lll]}
X exp{i/ dt/dx(go(x,t)J*(X,t)+J(x,t)<p*(x,t))} (4.5.52)
COO

is of the same form as the functional integral in (4.5.47), but now with an effective action, that is defined
by . .
I—S(Eﬁ) * = * l * L\ *
&xp) STl el = [ DYTDY expy - Set. g U0 (4.5.53)

Hence, our next task is to integrate out the field W(x, t), which can be done exactly because it only
requires a Gaussian integration (see problem 4.5.5, page 279):

SN [p*, o] = Z/C dt/c dt’ ¢ (t)
a,a’

:
x {('hﬁ —eq+ u) Sa.ad(t,t) — hEq q(t, t’)} 0o () (4.5.54)
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with the self-energy %, . (t, t’) of theform
1 *
h¥qq (t, 1) = 3 Xk:ta(k)e(k; t, t)t, (K) (4.5.55)
where G(k; t, t’) isthe Green function obeying
d
(ihﬁ —e(k)+ u) Gk;t,t") = hde(t,t). (4.5.56)
Here we haveintroduced the - function on the Schwinger—Keldysh contour defined by

dt’ se(t,t') = 1.
COC

In order to solve equation (4.5.56), we need to know the appropriate boundary conditionsatt = t’. To
derive them, we note that G(k; t, t’) describes the properties of the reservoir and, similarly to (4.5.49), it
can be expressed via the density matrix oc,r of the reservoir as follows:

iG(k: t, 1) = Trijc r(to) Tes (P By (1)) (45.57)
From this identification, we see that the desired solution fulfilling the appropriate boundary conditions
Gk t,)l=v = —IN® (k) + 3)
is apparently
G(k: t, 1) = —ie? CO=mED/MGe — )1+ N® (k) + 5t — )N® (k)} (4.5.58)

with N® (k) = 1/(ef€K—1) _ 1) being the appropriate Bose distribution functionand g = 1/(kgT). It
is convenient to decompose the Green function into its pieces G~ (k; t — t’) and G=(k; t — t’) by means
of

Gk;t,t) =0t —thG™(k;t —t) + 0t —t)G=<(k; t —t'). (4.5.59)

Due to the fact that we are always dealing with time-ordered correlation functions, such a decomposition
turns out to be a generic feature of al the functions on the Schwinger—Keldysh contour that we will
encounter in the following.

< Propertiesof the effective action for an ideal gasin areservoir

Having obtained the Green function of the reservoir, we can now return to our discussion of the effective
action SN [p* ¢] for the Bose gas in the trap. We again perform the transformation ¢ (ty) =
da (1) £ &, (1)/2 to explicitly separate the (semi)classical dynamics from the effect of fluctuations. This
leads to the following expression for the effective action

.0 .0
S@[g*, ¢ £, 6] = ;/dt {qs;(t) (ma — e+ u) Ea (D) + E5(D) (ma — e+ u) ¢a(t)}
-3 / dt / dt’ (@3 OAZ) (= ) (M) + EXORTL) (=)o (1))

-3 f dt / dt' &5 (ORE, (t — ) (t) (4.5.60)
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where we have introduced the retarded and advanced components of the self-energy (4.5.55) defined by
Tt —t) = 2O — 1)) (5], (t — 1) = 55t — 1)) (4.5.61)
and the so-called Keldysh component
Dyt =t =27t —t)+ 35, —t) (4.5.62)

which is associated with the part which is quadratic in the fluctuations.
In order to clarify the physical content of these various components of the self-energy, it is useful to

write the factor .
exp{ _'52 :/ dt/ dt’ g5 (B, (t —t’)saf(t’)}
a,a’ to to

in the integrand of the functional integral [ D¢* Do DE* De expli SENN™.#:6761/h a5 a Gaussian
integral over acomplex field n(x, t). Then the total effective action becomes:

SR AN S
= Z/ dt/ dt’ ¢* (1) {(ih3 —eat - n;;(t)) o8t —t) = HE ) (1 — t/)} £ ()
wa 0 to ot ’ o

+ Z/ dt | dt’&xt) {(ih% —atu— na(t)> Suard(t —t) — =Dt - t’)} bo (1)
a,a’ t to !
+2)° / dt / dt’ i O (HZ) Lt — )ne ) (4.5.63)
o 0 to '

andisthuslinear in &, (t) and £} (t). Integrating over these fluctuations, we conclude from this action that
thefield ¢ (x, t) is constrained to obey the Langevin equations

12 = (0 — wd® + 3 [ AU B = V) + ma O (45.64)
at — Jio ,
and 5 -~
—iRGE () = (ea — WEEDO + Y / dt’ ¢ YRS (M — 0 + k(D) (4.5.65)
at — ), :

with the Gaussian noise terms , (t) and n; (t) which, from the last term in the right-hand side of (4.5.63),

are seen to have the time correlations

ih? 1 dk . )

sk -t = —/—(1+2N(B)(k))t;‘(k)e"(é(k)‘“)(t‘t)/hta/(k) (4.5.66)
o 2) @2n)3

(g One ) = >

in the thermodynamic (infinite-volume) limit.

<& Long-time behaviour of theideal gas coupled to a reservoir

Let us consider the limit tg — —oo, which physically means that we neglect the initia transients that
are due to the precise way in which the contact between the trap and the reservoir is made, and focus on
the ‘universal’ dynamics which is independent of these details. In addition, at long times, the dynamics
of the gas is expected to be sufficiently slow and we can neglect the memory effects altogether. Also,
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we consider the case of areservoir that is so weakly coupled to the gas in the trap that we can treat the
coupling in the second order of perturbation theory. As a result, we can also neglect the non-diagonal
elements of the self-energies. Eventually, we are then allowed to put

E Kt —t) = 2B K, 8t — ). (4.5.67)

o,

p3

With these simplifications, the Langevin equations (4.5.64) and (4.5.65) become

ih%m(t) = (e + B = Wb (D) + 0 (1) (4.5.68)

and the complex conjugate equation for ¢ (t). The retarded self-energy in this equation is given by

dk 1
+) _ *
e = | G0 o =g« (4.5.69)

and using the well-known formulafor the distributions (generalized functions), i.e.

1

w—w +i0 w-—

. Find(w— o)

(P denotes the principal value part of an integral) the result can be decomposed into real and imaginary
parts:

dk P
— + _ *
S =Rex} _/ P t*(k) o 6(k)ta(k) (4.5.70)
and
Ry=—Ims}) == / %8(% — (k) |te (K)|2. (4.5.71)

The interpretation of these results is quite obvious if we consider the average of the Langevin equation,
i.e

.0 .

Ihﬁ (Pa) () = (€0 + S — IRy — 1) {gha) (1) (4.5.72)

which is solved by .
(Pa) (1) = () (0)e ! Cat St/ hg=Rat /R (4.5.73)

Hence, the real part of the retarded self-energy S, represents the shift in the energy of state x,(x), due
to the coupling with the reservoir, while the fact that | (¢q ) ()2 = | () (0)|2e 2Rt/ = |(,) (0) |2 Tet
shows that the average rate of decay I, of the state x, (X) isequal to 2R, /.

Next, we are going to determine %9 (|¢«|2)(t)/0t. To do so we first formally solve the Langevin
equation by

H t
Pa(t) = e—i<6a+ﬁ25ﬂ—“>t/h{¢a(0) - 7% / dt’n(t’)é“ﬁhfé“—“)t’/h}. (4.5.74)
0
Multiplying this with the complex conjugate expression and taking the average, we obtain:
H t
(Ipa?) (1) = e—ZR«‘/h{<|¢a|2>(0) + '52:5 / dt’eZRa”h} (45.75)
0

which shows that 5 1
in=(16al?) (0 = —2iRa{Igel?) (D) — ST (4.5.76)
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On the other hand, the Keldysh component of the self-energy is given by

K _ ; dk (B) _ 2
S = —27i / (Zﬂ)3(1+2N (K)8 (e — €(K))|te (K)| (4.5.77)
and therefore obeys
hEK = —2i(1+ 2NBHR, (4.5.78)

with N{® = (e8«=1 _ 1)~1 peing the Bose distribution function. Relation (4.5.78) is a particular case
of the important fluctuation—dissipation theorem in quantum statistics, because it relates the strength of
the fluctuations determined by hEO'f, to the amount of dissipation that is given by R,. The fluctuation—
dissipation theorem ensures that the gas relaxes to thermal equilibrium. This can be seen from (4.5.76),
because substituting the fluctuation—dissipation theorem leads to

.0 . .
lh5<|¢a|2>(t> = —2iRy(|¢a|?) (1) + IRy (1L + 2N®)) (45.79)

which tells us that at equilibrium (that is, if 8(|¢«|?)(t)/t = 0) we have (j¢a|?) = N + 1, asit
should be. Substituting thisidentity in (4.5.79), we indeed obtain the correct rate equation for the average
occupation numbers

%Na (t) = =Ty Ng (1) + T NB = —Ty Ny (1) (1 4+ N® (k) + T 1+ Ny 1)NB® (k) (4.5.80)

that might justly be called the quantum Boltzmann equation for the gas, because the right-hand side
contains precisely the rates for scattering into and out of the reservoir.

From the time-evolution equations for (¢ )(t) and (|¢«|%)(t) we can read off the corresponding
Fokker—Planck equation for the ideal gas coupled to the reservoir (cf also problem 4.5.1, page 277 for a
direct derivation of the Fokker—Planck equation):

G o e 9 o . .
Ihat Plo™, ¢; t] = (; s (€q + RZ, ,U«)¢a> Pl¢™, ¢; 1]

3
+ (Z e (o +HES) — u)¢2§> Plg™, ¢; t]

1 82 K * g

Using again the fluctuation—dissipation theorem, it is not difficult to show that the stationary solution of
this Fokker—Planck equationis
Plg*, ¢; 00] = ]"[—1 exp: L |2} (45.82)
s ¥y - - o . =
AT TN
Summarizing, the dynamics of a gas coupled to areservoir is solved by
(Bu) (1) = (po)(Q)e et heTet/2 (4.5.83)

and
Ny (t) = Ny (0)e et 4+ NB) (1 — 7oty (4.5.84)
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Inthelimitt — oo, the average of the annihilation operators (¢, ) (t) thus always vanishes, but the average
occupation numbers N, (t) relax to the equilibrium distribution N, = (ef€~=% — 1)~1, Although this
appears to be an immediately obvious result, its importance stems from the fact that it is aso true if
we tune the potential energy bias AV®, such that at low temperatures the ground state x(x) acquires
a macroscopic occupation, i.e. Ng > 1. The gas therefore never shows a spontaneous breaking of the
U (1) symmetry, in agreement with the notion that we are essentially dealing with an ideal Bose gasin
the grand canonical ensemble. The reason for the absence of spontaneous symmetry-breaking can also be
understood from our stationary solution of the Fokker—Planck equation in (4.5.82), which shows that the
probability distribution for |¢o| is proportional to the Boltzmann factor e=#€o~m190l” in the degenerate
regime of interest and the corresponding free energy F (J¢o|) = (€0 — 1)|o|? never shows an instability
towards the formation of a non-zero average of |¢g|, due to the fact that g —  can never become less
then zero. Once we introduce interactions between the atoms in the gas, this picture changes completely.

< A comment on the non-diagonal parts of the self-energies

Before we start a short discussion of aweakly interacting Bose gas, it is necessary to make afinal remark
about the effect of the non-diagonal elements of the self-energies (recall that we used the smplified
diagonal ansatz (4.5.67)). Physically, including these non-diagonal elements accounts for the change in
the wavefunctions x, (X), due to the interaction with the reservoir. This can clearly be neglected if the
coupling with the reservoir is sufficiently weak or, more precisely, if |h2§fl (o + S — )| is much
smaller than the energy splitting e, — €| between the states of the gas. A strong-coupling situation can
also be studied and the main difference is that we need to expand our various fields not in terms of the
eigenstates x (x) but in the eigenstates x, (x) of the non-local Schrodinger equation

22

el xl(x) = <_hz—:] + v@‘(x)> XL (X) + / dx’ Re[hZ ) (x, X'; €}, — )1x,(X) (4.5.85)

where ¢/, are the new eigenvalues and A (x, X';€) = Y, o xa(x)hzgg,(e)x;(x/). In this new
basis, the non-diagonal elements of the self-energies can now be neglected and we find essentialy the
same results as before. We only need to replace e, + S, by €, and t, (k) by

3 ( f dx X&(X’)x&k/(x)>ta/(k)-

o

Neglecting the non-diagonal elements in this basis only requires that the real part of the retarded self-
energy is much larger than itsimaginary part, which is aways fulfilled in the low-energy regime.

< Bose-Einstein condensation of an interacting gas

As well as the majority of non-trivia realistic physical models, the Bose gas with interaction cannot be
solved exactly and we should find appropriate approximation methods. The usual perturbation theory
is not suitable for the consideration of phase transitions. Thus, further investigations amount essentially
to the summation of an appropriate infinite series of Feynman diagrams of the perturbation theory, or,
equivalently, to approximate solution of integro-differential equations of the type (4.5.85). We shall
present, for completeness, a very brief sketch of such an analysis in the rest of this section. We shall
consider only a homogeneous Bose gas. in this case, we are allowed to take the thermodynamic limit in
which the Bose—Einstein condensation becomes atrue second-order phase transition. We are then, in fact,
studying the dynamics of a spontaneous symmetry-breaking under the most ideal circumstances.
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As we have mentioned earlier, the energies ¢/, and the corresponding eigenstates x, (x) for an
ideal gas can be determined from a non-local Schrodinger equation of the type (4.5.85), once we know
the retarded self-energy X" (x, x’;t — t’). The same is true for a homogeneous atomic Bose gas
with interactions, only with the exception that the non-zero self-energy is now due to the interatomic
interactions and not to the presence of a reservoir. In a sense, an interacting gas also plays the role of
its own reservoir. Moreover, the homogeneity of the gas leads to an important simplification, because
tranglational invariance requires that the retarded self-energy is only a function of the relative distance
x — x'. Therefore, the Schrodinger equationin (4.5.85) is solved by x, (X) = xk(x) and

€'(k) = e(k) + Re[hZ P (k; €' (k) — )] (4.5.86)
where e(k) = h2k?/2m again and

(;tk)g %E(+)(k, E)ei(k~(x7x/)fe(t7t’)/h)_ (4587)

TP —xt-t) = /

To solve (4.5.86), we need of course an expression for the retarded self-energy of a weakly interacting
Bose gas, which follows oncewe know the full self-energy 2X (k; t, t") defined on the Schwinger—K eldysh
contour C*°. Unfortunately, even for a dilute system this quantity cannot be calculated exactly and some
approximation is called for. The approximation that we will make here is the so-called many-body T -
matrix approximation. The main motivation for this approximation is that due to the smallness of the gas
parameter (na®)1/2 (cf (4.5.9)), it is very unlikely for three or more particles to be within the range of the
interaction and we only need to account for all possible two-body processes taking placein the gas.

Given the effective interaction V (k, k’, K; t, t") for the scattering of two atoms which at the time
t’ have the momenta (K /2 + k') and at the time t, the momenta i(K /2 £ k), respectively, the exact
self-energy obeys a Hartree—Fock-likerelation

dk’
hok;t,t) = 2i / D V(k—K, k=K, k+K;t,thGK: 1) (4.5.88)
(2m)3

where the Green function equals again (4.5.58), but with e (k), replaced by ¢’ (k) to make the theory self-
consistent. Since we are dealing with bosons, the effectiveinteractionis asum of adirect and an exchange
termand can bewrittenasV (k, k', K; t,t") = (T (k, K/, K; t,t") + T(=k, K, K; t,1t/))/2 in termsof the
many-body T-matrix that obeys the Lippmann-Schwinger equation (see, e.g., Taylor (1972))

i dK”
Tk, K, Kit,t) = V(k — K)S(E ) + + ¢
(k. K, Kit, 1) ( )5(t,t)+h/wdt /(zn)g)

x G(K/2+ K’ t,t")G(K /2 — K'; t,t")T(K", K, K:t",t')  (4.5.89)

V(k — k")

with V (k — k’) being the Fourier transform of the interatomic interaction potential. By iterating this
equation, we see that the many-body T-matrix indeed sums all possible collisions between two particles.
Moreover, the Green functions G(K /2 £ k”; t, t”) describe the propagation of an atom with momentum
h(K/2+k"”) fromthetimet” tothetimet in the gas. Therefore, we also see that the many-body T -matrix
incorporates the effect of the surrounding gaseous medium on the propagation of the atoms between two
collisions. A detailed consideration of thisequation (Stoof 1999) allows usto concludethat for the thermal
momenta, i.e. for momenta ik which are of the order of i/Ag (Ag is defined in (4.1.25)), we have

2
(ki t) = e(k) + W (4.5.90)
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(a isthe radius of particle interactions). However, this conclusion is not valid for momenta %k that are
much smaller than the thermal momenta, because in that case the energy denominator in the integrant
favors the small momenta where the occupation numbers are especially large in the degenerate regime.
For such momentaand, in particular, for the momentaobeying ik < hiv/87ha « h/Ag, it has beenfound
in a good approximation that

8z n(t)ak? d3K’ d3k” P
"(k; t) = e(k _2 v 0,k K’ 2N K:t)N(K”: t
€k t) = e(k) + oo | eV PPN ONK 0
(4.5.91)

(the V) component of V is defined similarly to (4.5.62)).

In principle, equations (4.5.90) and (4.5.91) already show clearly the tendency of the gas to become
unstable towards Bose-Einstein condensation, because the energy of the one-particle ground state is
shifted less upwards compared to the one-particle states with thermal energies. To show when the gas
is actually unstable, we need to compare the energy of the zero-momentum state with the instantaneous
chemical potential which isfound to be

2
() ~ W + 1o®) (45.92)

where the time dependence of theideal gaschemical potential wo(t) = uo(n(t) and T (t)) isrelated to the
precise path in the density—temperature plane that is followed during the cooling process. An instability
therefore occurs once the quantity

dk' [ dk”
@n)3 ) (@2n)3

P

VOO, K, K)PNK :; HONK 1)
IV ( JENKEONK O

€0 t) — pu(t) = —po(t) —2

becomes less than zero (cf the comment after (4.5.84)). It can be shown that the gas indeed develops the
required instability for Bose—Einstein condensation if a > 0 and the temperature is less than a critical
temperature Te.

<> Dynamics of the zero-momentum part of the order parameter

At the semiclassical level, the results obtained earlier show that the effective action for the long-
wavel ength dynamics of the gas, i.e. for states with momenta ik < h+/8mna, is given by

e _ * ; 3_ Il
S7¢*, o1 = /dt{;fﬁk(t)(lﬁat e (k; t)+M(t))¢k(t)

1
— 5 2 17000 0>¢>;2/2+k<t>¢;2/2k(t)¢K/2kf(t>¢K/z+k/<t>} (4.5.93)
k,k’,K

(the T component of T is defined similarly to (4.5.62)). The field ¢ (x, t) can be considered as the
order parameter of the Bose gas. The effective action ¢*, ¢] defines the Landau—Gi nzburg theory for
this order parameter. In particular, we thusfind that the dynamics of the zero-momentum part of the order
parameter, i.e. the condensate, is determined by

T (0,0,0; 0)

9,
SHE /dt {qbé(t) (lh§ -0 )+ M(t)) $o(t) — >V

|¢o(t)|4} . (45.94)
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Introducing the density po(t) of the condensate and its phase 6p by means of the relation ¢o(t) =
Vpo®VeP, thissimply leadsto

T (0,0,0,0

%'[po, u] =V/dt (—6/(0; )+ u(t) — >

po(t)> po(t). (4.5.95)
Note that in the process of deriving the last eguation, we have omitted the topological term
[ dt (irdpo(t)/at) as it does not affect the equations of motion and is therefore irrelevant at the
semiclassical level. Thisis, in principle, important only when we also want to consider the quantum
fluctuations of the condensate. Clearly, this action is minimized by po(t) = O, if €/(0;t) — u(t) > 0.
However, we have a non-trivial minimum at

€'(0; 1) — pu(t)

THH(0,0,0; 0
if €(0;t) — u(t) < 0. Thisresult gives the desired evolution of the condensate density after the gas has
become unstable, in terms of the time-dependent chemical potential w(t). The next task is therefore to
determine an equation of motion for the chemical potential.

To achievethis, we have to consider theinteractions between the condensed and non-condensed parts
of the gas, which have been neglected so far. Substituting ¢x (t) = ¢o(t)dk 0 + ¢y (1) (1 — 8k o) into the
semiclassical action and integrating over the fluctuations ¢, (t) describing the non-condensed part of the
gas, we find that the correct semiclassical action for the condensate reads as

S0, 11 = §po, u] — irInZY o, 12]) (4.5.97)

where Z%[po, ] represents the functional integral over the fluctuations for given evolutions of the
condensate density and the chemical potential. Writing S° (0§ + ¢, 0 + ¢'] &s %’ (95, dol +

S'[¢*, ¢'; po. 111, we obtain

po(t) = (4.5.96)

I / I I /
2% po, ] =/D¢*D¢ exp{ﬁﬁ'[tﬁ*,qﬁ;po, u]}. (4.5.98)
With this action, the total density of the gasis calculated in the thermodynamic limit as
1 6S%po, ul d3k
t) = ———— = po(t N(k; t 4.5.99
PO =y 0 po( )+/ 207 (k; t) ( )

where the occupation numbers are found from

/ D¢ D¢’ ¢y 4 (1) expli S [¢™, ¢'; po, 111/h}

Z% po, ;1] '
The latter two equations, together with (4.5.96), both give the condensate density pp(t) and the chemical
potential 1 (t) asafunction of the total density p(t) and formally thus completely solve the semiclassical
dynamics of the gas.

Determining the occupation numbers N(k, t) requires solving an interacting quantum field theory,
which cannot be done exactly. An approximation is thus called for. Taking only the quadratic terms
in q’ [¢"™*, ¢'; po, ] into account amounts to the Bogoliubov approximation. Indeed, the action for the
fluctuations then becomes equal to

.0
Sl ¢'1 = / dt { qu/k*(t)(lha —e(k) — poHT(0,0,0; 0>)¢’k<t>
k0

N(k; t) =

(4.5.100)

1
— 5T%(0,0,0;0)po(t) D (@R ) + ¢>’_k(t)¢/k(t))} (4.5.101)
k0
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if we use (4.5.91) to evaluate the energy differencee’(k; t) — €’(0; t) = (k) at the long wavelengths of
interest here. The energies of the Bogoliubov quasiparticles, at this level of approximation, thus obey

ho(k; t) = \/Ez(k) + 200t TH)(0, 0, 0; 0)e(K). (4.5.102)

They are purely real and correspond to the linear dispersion relation for small momenta. However, in
the Bogoliubov approximation, the quasiparticles are non-interacting. This is reasonable sufficiently far
below the critical temperature when the condensate density is large, but not very close to the critical
temperature. In that case, the interactions between the quasiparticles are very important and cannot be
neglected.

Werefer the reader for detailsand for further consideration (in particular, for the study of fluctuations
and determination of the full probability distribution P[¢*, ¢; t]) to van Kampen (1981), Popov (1983),
Zinn-Justin (1989), Griffin (1993), Griffin et al (1995) and Stoof (1999).

45.4 Problems

Problem 4.5.1. Derive the Fokker—Planck equation (4.5.81) for an ideal Bose gas coupled to a reservoir,
directly from the effective action S [¢*, ¢; £*, £] defined in (4.5.60), making the same approximations
on the self-energiesas in (4.5.67) (and without making use of the Langevin eguations).

Hint. The effective action for the probability distribution P[¢*, ¢; t] in the required approximation reads

Sig*, ¢ £, 61 = Zf dt’ ¢a(t)<uh— — e — BTy >+u>s )

ot’
t 3
! &%k / B _ (+) ’
+Xa:/to dt g‘)‘(t)(lhat/ €e —hZ, +/'L) P (t)
t
-3 /t avs, (VAT a(t) (4.5.103)

and is quadratic in the fluctuation field £ (x, t). We can thus again perform the integration over this field
exactly. Theresult is

eff) | _c
S p* ] = Z/dt FEK

Since the probability distribution P[¢*, ¢; t] isequal to the functional integral

2 t
= / dtL(t)).  (4.5.104)

to

0
(| i hESH + u) Pa(t)

Plo™, ¢;t] = / Dop* Do exp{'—s<6ff>[¢*,¢]} (4.5.105)
Clp(X.H)= (X):p*(X.H)=¢*(X)) h

we know that P[¢*, ¢; t] must obey the ‘ Schrodinger equation’ that results from quantizing the classical
theory with the Lagrangian L (t).
The quantization of this theory is straightforward. The momentum conjugateto ¢, (t) is

RO R B S .
9(9¢a(t)/31) 25( hop ~ 6 —h¥% +M) b (1) (4.5.106)

e (t) = I T
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whereas the momentum conjugateto ¢ (t), i.e. 2 (t), is given by the complex conjugate expression. The
corresponding Hamiltonian is therefore

_ 0pa(t) 35D _
H—Z{na(t) R AU } L(t)

o

= {—lhna(tXea +BESD = 0o ®) + s O +HEL - u)qs;t(o}

ZK
+22_2|7Ta(t)|2 (45107)
o

Applying now the usual quantum-mechanical recipe of demanding non-vanishing commutation relations
between the coordinates and their conjugate momenta, we can put in this case 7, = (h/i)d/9¢, and
smilarly 7} = (h/i)d/9¢];. The*Schrodinger equation’
a .
iha Plo*, ¢; t] = HP[o*, ¢; t] (4.5.108)
then indeed reproduces the Fokker—Planck equation in (4.5.81) exactly.

Problem 4.5.2. Prove the equivalence of expressions (4.5.43) and (4.5.44), (4.5.45) for the probability
distribution P[¢*, ¢; t] of an ideal Bose gas.

Hint. Use the result of problem (1.2.6) and thefact that p[|¢o|2; to] enters the normalization constant n-1
(see the comment before (4.5.39)).

Problem 4.5.3. Derive the time-evolution equation for the mean values (¢, ) (t) and (|¢|?)(t) for anideal
Bose gas with the probability distribution P[¢*, ¢; t] satisfying the Fokker—Planck equation (4.5.46).

Hint. We first consider the average (¢«)(t) = [ D¢* D¢ ¢po P[¢*, ¢; t]. Multiplying (4.5.46) with ¢,
and integrating over ¢ (x), we find after apartial integration that

9
|h§<¢a>(t) = €a(Pa)(t) (4.5.109)

which prec